
The Pennsylvania State University
The Graduate School

College of Information Sciences and Technology

COMPUTATIONAL MODELING OF COMPOSITIONAL AND

RELATIONAL DATA USING OPTIMAL TRANSPORT AND

PROBABILISTIC MODELS

A Dissertation in
Information Sciences and Technology

by
Jianbo Ye

© 2018 Jianbo Ye

Submitted in Partial Fulfillment
of the Requirements
for the Degree of

Doctor of Philosophy

May 2018



The dissertation of Jianbo Ye was reviewed and approved∗ by the following:

James Z. Wang
Professor of Information Sciences and Technology
Dissertation Co-Adviser, Co-chair of Committee

Jia Li
Professor of Statistics
Dissertation Co-Adviser, Co-chair of Committee

C. Lee Giles
Professor of Information Sciences and Technology

Zhenhui Jessie Li
Associate Professor of Information Sciences and Technology

Reginald B. Adams
Associate Professor of Psychology

Graduate Program Chair: Andrea Tapia

∗Signatures are on file in the Graduate School.

ii



Abstract

Quantitative researchers often view our world as a large collection of data generated

and organized by the structures and functions of society and technology. Those data

are usually presented and accessed with hierarchies, compositions, and relations.

Understanding the structures and functions behind such data requires using models

and methods for specifically analyzing their associated data structures. One of

the biggest challenges in achieving this goal is developing a principled data and

model framework capable of meaningfully exploiting the structured knowledge

of data. Those structures of data include compositional and relational patterns:

multiple entities have to interact and group in order to make sense. Although

the conventional vector-based data analysis pipelines have become the standard

quantitative framework for many fields in sciences and technology, they are not

directly applicable to and have several limitations for extracting knowledge from

compositional and relational data.

The goal of this thesis research is to introduce new mathematical models

and computational methods for analyzing large-scale compositional and relational

data, as well as to validate the models’ usefulness in solving real-world problems.

We begin by introducing several backgrounds, including optimal transport, an

old but refreshing topic in mathematics, and probabilistic graphical model, a
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popular tool in statistical modeling. Particularly, we explain how optimal transport

relates to an important modeling concept, a.k.a. matching, in machine learning.

Next, we present our work related to computational algorithms of those relational

and structural models including a fast discrete distribution clustering method

using Wasserstein barycenters, a simulated annealing-based inexact oracle for

Wasserstein loss minimization, a Bregman ADMM-based oracle for Wasserstein

geodesic classification, and a probabilistic multi-graph model for consensus analysis.

Their computational complexities, numerical difficulties, scalability, and accuracy

issues are discussed in depth. We apply those computational algorithms to several

areas, such as document analysis and crowdsourcing, by treating data as relational

quantities from a perspective that has not been fully studied in the literature.

We will conclude by discussing challenges in developing suitable methods for

compositional and relational data and review more recent work that addresses

several past concerns.
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Chapter 1 |
Introduction

Our world produces data in a variety of forms in terms of structure and function.
Those data are usually presented as hierarchies, compositions, and relations. The
growing diversity of these forms raises the vast need to create suitable and advanced
analytic methods through modeling and computation. Bladesmithing is the art of
making blades such as knives, swords, and daggers using smithing tools provides an
interesting analogy for understanding the need for various methods for analyzing
data. Blades are historically made for different purposes, namely to cut objects
for various purposes. Those uses require different degrees of thickness, shape, and
tensile strength. Similarly in the era of big data, we need models for understanding
different types of data, with a diverse set of purposes subject to the facts, e.g.
where data come from, how data are generated, why data are collected, etc.

As a modeler, I understand the temptation to treat data in a consistent manner.
To convert data into familiar representations and then apply our existing modeling
skills to extract information from them is somewhat comforting. For example,
one who works in topic modeling often converts data into tokenized counts before
proceeding to extract modes of data as topics. One who works in convolutional
neural networks often converts data into vectors that inherit some spatial-temporal
patterns before proceeding to build a predictive model. Thinking as a bladesmith,
one has to know what types of blades is most suitable to do the job by re-positioning
the purpose in a priority. Such decision-making requires critical understanding
of the properties of the target. In this thesis, we present our approach and work
as a bladesmith’s striving to hone a more suitable blade: specifically, we build
computational models tailored to subjects.

In other words, this thesis is devoted to modeling compositional and relational

1



data with unconventional approaches. Despite being unconventional, these ap-
proaches are arguably often more natural in the sense of collecting and generating
data. Modelers are always subject to certain assumptions about data, but some
assumptions exist for computational convenience rather than the simplification of
data composition or relations. With the advance of modern computer architectures,
however, we become more flexible in terms of computations. We no longer need
to follow some conventions of past practices that developed from constraints of
hardware or software limitations.

Developing such unconventional approaches as shown in this thesis requires in-
novation from the most basic grounds for data and pattern representation, mastery
of some foundational mathematics and solid computational methods to support
the rigor and the feasibility, and real world opportunities where those approaches
become valuable. This thesis focuses on those tasks. As an overview, we first
provide a holistic picture of my thesis research in Chapter 1 including several basic
concepts, main ideas and challenges, and potential impacts. Next, we introduce
a “sword” — optimal transport (OT) — as a key concept to tackle the research
challenge. Particularly, we present some prerequisites for rigorously understanding
optimal transport and the motivations for developing OT models in Chapter 2.
Most notations are established for reference in later chapters. Next, we present a
cookbook for how the “sword” is made by listing three scalable approaches that
computationally solve optimal transport. This thesis research contributes to the
development of two approaches. Therefore, we provide more details about them,
including algorithms, implementations, applications, and experiments in relevant
chapters. Almost all OT models use one of those approaches as a backbone. A
comprehensive review of other techniques is offered in Chapter 3. We demonstrate
their use in Chapter 4, where models built on top of optimal transport become
computationally tractable using the numerical methods in Chapter 3. The exper-
iment results show the advantages of using Wasserstein geometry to model the
data over vector-based models, and how specific approximation strategy leads to
different effects. In Chapter 5, we present a specific application of D2-Clustering
in text analysis domain, showing the potential of this new family of models in
practice. After finalizing the chapters related to OT, we then describe a graph-based
approach for crowdsourced affective data in Chapter 6. Graph, as a natural way to
represent relational quantities, is a popular way of modeling. The method developed
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in the thesis overcomes the limitation of conventional vector-based approaches in
improving the quality of crowdsourced affective data.

1.1 Several Key Concepts in Modeling
This section offers a generalized review of several key concepts in modeling. Those
who are familiar with the literature may skip this section. We found this part to
be essential to most audiences who are new to the subfield, even for experienced
machine-learning researchers and practitioners. Since we mainly discuss non-vector
approaches in the thesis, it is important to track the model assumptions, identify
parameters (representation in the continuous and discrete sense), and understand
how they are computed or updated numerically.

Geometric models. A geometric model is an abstraction of data in metric space.
The geometry of data basically gives a distance measurement between any two
data “points” in the sample space. Here “point” refers to any type of entity in the
dataset. It could be a single point in a Euclidean space or a single distribution. The
goal of a geometry model is to extract part of the geometric information encoded
in the data.

Probabilistic models. A probabilistic model is an abstraction of data that are
hypothetically treated as samples from a probabilistic model. A probabilistic
model is a generative model if the data are hypothetically generated in a completely
specified way but is a discriminative model if only part of the data are hypothetically
generated by observing the other part of data.

Vector-based models. A vector based model represents the entity of data as a
vector, whose quantities are indexed by the dimensions. For example, an image
can be represented by a vector of pixels, whose length is width times height, by
ignoring the locational annotations of pixels.

Geometric distributional models. A geometric distributional model is a geometric
model for distributions. Precisely speaking, a set of distributions is embodied with
a metric space or a measurement structure such that a geometric model can be
constructed. In fact, the thesis will put a large body on Wasserstein space, a space
derived from the optimal transport principle. Wasserstein space is a metric space
for distributions with a metricized support set.

Graph models. A graph model is an abstraction of graph data. It could be
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a probabilistic generative model by specifying how the graphs (a.k.a. nodes and
edges) are created. A multi-graph is a set of graphs which have shared nodes.

Parameters. Parameters are numerical quantities that control the variations
of a model family. In fact, it does not have to be vectors or scalars. In some of
the distributional models explored in the thesis, the parameters are realized as the
discretization of a distribution or the discrete distribution.

Algorithms. When a model is fitted to data, its parameters are estimated
numerically by an algorithm. Such algorithms are computational methods that
instantiate a model representing a particular dataset, and can be implemented
using modern computers.

1.2 Innovation, Gap, and Impacts
The innovation of this research starts from the basic representation of entities.
Classical methodologies in machine learning and data analytics often assume a
vector-based representation of entities. That is, a fixed-length vector is used to
summarize useful aspects of each entity. Vector-based representation is often
convenient for computation and storage purposes, but it is not always justified
for understanding real-world sophisticated situations, where unstructured data are
ubiquitous. When each entity is a complex object containing information at multiple
levels (e.g., images, documents, sequences, and graphs), it becomes significantly
nontrivial to construct such vector representation. In many quantitative disciplines,
data and domain experts must manually construct such a vector representation.
Since such process is open-ended and requires domain knowledge, useful information
can be lost in the preprocessing stage when original data is forced into a certain
format.

This research proposes to represent such entities by sets of unordered and
weighted components and we call this data model compositional. We develop a
school of machine learning methods for this data model without converting them
into vectors. The methods include clustering, gradient-based learning, component
analysis, and classification. By learning directly from compositional data, we
bypass the need to extract high-level features, overcoming the limitations of past
understandings of data when only a finite number of features are studied. Moreover,
patterns discovered from compositional data are itself compositional, hence are
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highly interpretable and easy to diagnose. The core technologies developed in this
research are used to analyze massive, distributed data in numerous areas of sciences
and the industry.

Another line of this thesis research is to propose a new probabilistic model-
ing approach for analyzing crowdsourced affective data [7]. Crowdsourcing is an
emerging direction for collecting large-scale psychological data using the Inter-
net. The goal is to identify more reliable or informative data annotators in the
subject pool of crowdsourcing and eventually to improve the quality of collected
data. One innovation of this research is the conversion of data (labels provided by
workers) to relational quantities (essentially building an agreement multi-graph)
before modeling them. The relational representation of crowdsourced data also let
one avoid making several unrealistic assumptions as are done in conventional models.

Revolutionizing the way data are represented is only the first step. The second
area of this research adopts the concepts and geometric understandings from the
optimal transport theory to develop mathematically rigorous models, and pushes
these models to tractable computational solutions. Concretely, each compositional
entity is treated mathematically as an empirical measure on a metric space. The
Wasserstein geometry is then used to characterize the space structures and the
proximity of measures. Established machine learning models were originally devel-
oped for data sitting in the Euclidean space, but rarely for the Wasserstein space.
The thesis comprehensively reviews the recent computational efforts of the machine
learning community in generalizing conventional models for the Wasserstein space,
and as a novel work in this field, this research proposes a set of new models and
methods following this spirit. In order to develop tractable algorithms for this new
family of models, a diverse set of computational methodologies are explored and
innovated in this research, crossing several subfields in numerical optimization and
computational statistics. The major challenge of realizing this goal originates from
the fact that the Wasserstein distance does not have a closed form to calculate, but
is instead defined by a variational formulation. Computing Wasserstein distance
can be done by linear programming at the complexity of O(n3 log n), whereas
computing other common discrepancy measures in machine learning is extremely
cheap, only at the complexity of O(n). The high level of complexity has prevented
machine learning researchers from studying the usefulness of Wasserstein distance
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in creating practical models for years. This thesis research develops two families of
approaches that one can actually approximate Wasserstein distance using O(n2/ε)
algorithms, substantially overcoming the aforementioned difficulty in developing
machine learning models for compositional data. The technical work of this research
have been published in premier journals and conferences in the field [8–11].

In the third area of my thesis research, we implement a set of computational
toolboxes that leverage current state-of-the-art parallel computing infrastructures
to realize data analytics at scale. It has been empirically successful in analyzing a
variety of real world data. For example, it was reported that the D2-Clustering
toolbox can parallel process millions of discrete distributions using hundreds of
CPU cores with over 80% scaling efficiency. The related technologies have been
filed as US patent and have already been used in several research projects in
computer vision [12], Bayesian statistics [13], computational linguistics [9], and
meteorological imaging science [14]. Another example is the tool developed for
improving the quality of crowdsourced affective data. A US patent is being filed
for this technology. Another doctoral student of the research group is using the
technology to systematically measure and control data quality for crowdsourcing
emotion-related data.
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Chapter 2 |
Optimal Transport: Background

2.1 Mathematical Backgrounds
We start from the basic concept of optimal transport. Based on their computational
natures, one can categorize the OT problems into continuous ones and discrete
ones. Here are two examples.
Continuous Optimal Transport. Please see Fig. 2.1. Assume that we are given
a pile of sand, and a hole that we have to completely fill up with the sand. Certainly,
we have to make sure the pile and the hole must have the same volume. Without
loss of generality, we assume the mass of the pile is 1. We shall model both the pile
and the hole by probability measures µ, ν, defined respectively on some measure
spaces X, Y . Whenever A and B are measurable subsets of X and Y respectively,
µ(A) gives the amount of sand located inside A; and ν(B) gives the amount of
sand to be piled inside B.

Moving sand from space X to space Y takes some effort, which is modeled by a
measurable cost function defined on X×Y . Informally, c(x, y) : X×Y 7→ R+∪+∞
tells how much it costs to transport one unit of mass from location x ∈ X to location
y ∈ Y . It is natural to assume c is measurable and nonnegative, and can take the
infinity.

A basic question is how to transport sand from µ to ν at minimal cost.
Discrete Optimal Transport. Assume that we are transporting wood from
several wood processing plants to several factories producing wood products. Each
plant has a certain quantity of wood already collected from mining sites, and each
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Figure 2.1. Moving sands, the figure is from Villani’s book [1]

factory has certain needs. One can represent the quantities at plants as vector
p ∈ Rm1

+ , and the quantities needed at factories as vector q ∈ Rm2
+ . Similar to our

sand problem, the total quantities of produced wood at plants and needed wood at
factories are the same, that is 〈p,1〉 = 〈q,1〉 = 1.

Transportation of wood also needs some effort, which is modeled by a cost matrix
M ∈ Rm1×m2

+ . Each element Mi,j in the cost matrix represents the transportation
cost between pair of plant i and factory j indexed by its row and column respectively.

Another basic question is how to develop a transportation plan between plants
and factories, by specifying in a pairwise manner how much wood from one plant
should be carried to one factory, such that the total cost is minimal. After such
a minimum cost plan is found, one may visualize the plan which would look like
something displayed in Fig. 2.2.

Figure 2.2. The sizes of circles visualizes the quantities of wood. Summations of
quantities of all black circles by row should be equal to quantities of the blue circles,
while summations by column should be equal to that of red.

There are many variants of OT problems depending on how the “distribution” is
defined. In the sand example, a continuous distribution (or a probability measure)
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is used to model a pile of sand. In the wood example, a discrete distribution is used
instead to model how wood can be distributed across different plants or factories.
A more common setup is to consider modeling data as “bags of vectors”, where
each vector in bag is sitting at the same Euclidean space. By setting the so-called
cost between any two vectors to their Euclidean distance, one can define a metric
distance between any two “bags” as their minimal transportation cost using a
similar OT formulation.

The OT formulation not only gives a way to measure the distance/dissimi-
larity between compositional data, a.k.a. bags, but also gives an interpretable
transportation plan. We will call such plan as “matching” in the sequel. We
want to emphasize that “matching” is a powerful idea as a modeling tool, because
it is decided dynamically between two collections of sand/woord. Under proper
assumptions, matching is deterministic as it follows the principle of OT. We will
revisit this concept many times in later chapters.

In probability theory, Wasserstein distance is a geometric distance naturally
defined for any two probability measures over a metric space.1

Definition 2.1.1 (p-Wasserstein distance). Given two probability distribution µ, ν
defined on Euclidean space Rd, the p-Wasserstein distance Wp(·, ·) between them is
given by

Wp(µ, ν)def.=
[

inf
γ∈Π(µ,ν)

∫
Rd×Rd

‖x− y‖pdγ(x,y)
]1/p

, (2.1)

where Π(µ, ν) is the collection of all distributions on Rd×Rd with marginal f and g
on the first and second factors respectively. In particular, the Π(·, ·) is often called
the coupling set. The γ∗ ∈ Π(µ, ν) that takes the infimum in Eq. (2.1) is called the
optimal coupling.

Remark 1. By the Hölder inequality, one has Wp ≤ Wq for any p ≤ q <∞. In this
paper, we focus on the practice of Wp with 0 < p ≤ 2.

1The name “Wasserstein distance” was coined by R. L. Dobrushin in 1970, after the Russian
mathematician Leonid Vasers̆tĕin who introduced the concept in 1969. Most English-language
publications use the German spelling "Wasserstein" (attributed to the name "Vaserstein" being of
German origin).
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2.2 Motivations for Developing OT Models
Before we study the mathematics of optimal transport, we provide some application
background for using optimal transport or matching in pattern modeling.

2.2.1 Computer Vision and Imaging Science

With the growing volume of image and video data in the world today and tremendous
diversity of applications in which images are involved, the need for generic methods
to deal with this huge amount of data is rapidly increasing. A common school of
practices begins by gathering statistics from an image as a feature representation,
and then using feature analytical methods to extract meaningful patterns from those
statistics. Because an image is considered a complex object, there are many ways to
extract such statistics. Thus, relevant features such as color, contours, orientations
or textures are first extracted from images and are then computationally represented
in histograms — a popularly used representation in image processing. Histograms
are built from the quantization of the space of features into discrete bins. This
process recasts the problems associated with image diversity and allows the retrieval
of a “similar” image in a database or segmentation of a particular object in an
image by comparing histograms. There are many efforts in the computer vision
and imaging community to develop advanced ways to enhance image descriptors
(including global descriptors, keypoint descriptors, and patch descriptors) and to
improve varying aspects of their robustness. Yet the common metrics used for their
comparison are still not sufficient to deal with various perturbation effects (such as
shifting, quantization, and deformation). In fact, this topic has long been pursued
in signal processing, where numerous researchers are attempting to address the
issue using data-driven approaches.

The optimal transport framework provides a compact and unified way for
addressing the robustness of histogram comparison but requires significant com-
putational cost. It was first considered for image comparison in 1989 [15]. Later,
it was introduced to computer science community as the Earth Mover’s Distance
(EMD) [16], where an image retrieval system was developed based on the similarity
between color histograms extracted from image data. Since then, EMD has been
established as an indispensable role in computer vision and multimedia retrieval,
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x1 = x2 =
‖x− x0‖2 5.89 5.07

KL
(
x
∥∥∥∥x+ x0

2

)
0.36 0.28

W2(x, x0) 3.38 4.45
Table 2.1. Different metrics in comparing two images

where a distribution-valued signature (including histogram) is adopted for object
representation [17–19].

The following example may help clarify the motivation for using optimal trans-
port for histogram comparison:

Example 2.2.1. Given x0 = , which one of the two is more similar (or closer)
to the query image? x1 = or x2 = ?

We compute different metrics for comparing two images in Table 2.1. The first
method treats the image as a vector of pixel intensities and directly calculates their
Euclidean distance. The second method treats the image as a 2D (normalized)
histogram and calculates the KL divergence. The last method again treats the image
as a 2D histogram but calculates the 2-Wasserstein distance (See Definition 2.1).

To understand the reason why the regular metrics (Euclidean distance or KL
divergence) implies the second image (the digit “3”) is closer or more similar to
the query image than the first image (the digit “2”), we must figure out what is
missing in the computation of those metrics.

By shuffling the locations of pixels and redisplay their intensities via an image
(See Matlab code below), can we correctly compare two images?

x0=vec( ); x1=vec( ); x2=vec( );
idx=randperm(length(x0));
x0=x0(idx); x1=x1(idx); x2=x2(idx);

The original images and redisplayed images are shown as follows:

It is impossible for a human to compare redisplayed images at the second row.
It is clear that not only the intensity of pixels but also the location of pixels
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contribute to our visual perception of image similarity. However, the regular
metrics (such as Euclidean distance, KL divergence) stay unchanged to any pair
of the redisplayed images, because they do not use the pixels’ locations in their
calculations. 2-Wasserstein distance is however a metric sensitive to the geometry of
pixels by its definition. It calculates the amount of effort in (minimum) transporting
pixel intensities between images on the 2D plane. If we visualize the intermediate
stages of this optimal transportation subject to an interpolating factor t = i

6 with
i = 1, . . . , 5, we may see images like below:

x0
1
6

1
3

1
2

2
3

5
6 xi

To this extent, most will see that the visualization of how the optimal trans-
portation between pair (x0, x1) or (x0, x2) is conducted matches our intuition of
comparing two histograms.

One may argue that there are many data-driven approaches that seek a proper
similarity measure for comparing complex objects. Data-driven approaches are
mostly successful when a test pair has sufficient evidences or clues in the training
set that tell how similar or dissimilar they are. In other words, a proper similarity
measure can be learned from previous experiences. If we believe real-world data are
sampled from a manifold (an assumption may be flawed in its own), the dissimilarity
between two points should be their geodesic distance on the manifold (See Fig. 2.3).
The comparison made based on the principle of optimal transport on the other hand
is following a different perspective. Instead of relying on previous experience and a
learning paradigm, the OT framework relies on the source of the prior knowledge
about data in order to create a matching problem. In our case, the prior knowledge
is the location of pixels. The prior knowledge often tells how to meaningfully
interpret data that is not directly expressed in data itself. It therefore becomes an
edge, which other conventional approaches never have the opportunity to consider.
We will revisit this same philosophy in the next section.

Another interesting fact of using OT as a basic principle in building a space of
histograms is the Wasserstein barycenter problem, discussed further in Chapter 4.
In the Wasserstein space, we actually can define a type of “centroid” in an analog
to the mean in Euclidean space. This special “centroid” possesses an intriguing
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Figure 2.3. Computing geodesic distances between a pair of points on the manifold as
a dissimilarity measure.

property to represent a set of distributions or histograms. Below is such an example
from [2].

Example 2.2.2. See Fig. 2.4. “We consider 30 images of nested ellipses on a
100 × 100 grid. Each image is a discrete measure on [0, 1]2 with normalized
intensities. Computing the Euclidean, Gaussian RKHS mean-maps or Jeffrey
centroid of these images results in mean measures that hardly make any sense,
whereas the 2-Wasserstein mean captures perfectly the structure of these images.” [2]

2.2.2 Document and Sentence Modeling

In the previous section, we have discussed the motivation of using OT for image
comparison, with a particular emphasis on its application to low dimensional
histogram data. In this section, we posit that OT can also be a powerful tool for
high dimensional discrete distributions.

Our example is in the area of document and sentence modeling. In this area, a
common idea to represent a document or a sentence is the bag-of-words (BoW) or
bag-of-concepts model. Consider that in a text corpus, we can form a vocabulary of
total N unique words and treat each document as a vector of dimension N . Each
dimension in the vector denotes the number of times an individual word appears in
the document. Therefore, the BoW vector of a document with m words in total at
most has m nonzeros, which is a sparse vector. Comparing the similarity between
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Figure 2.4. (Top) 30 artificial images of two nested random ellipses. Mean measures
using the (a) Euclidean distance (b) Euclidean after re-centering images (c) Jeffrey centroid
(Nielsen, 2013) (d) RKHS distance (Gaussian kernel, σ = 0.002) (e) 2-Wasserstein distance.
The figure is cropped from [2].

two documents to a large extent is thus to count the occurrences of individuals
words across the entire vocabulary by computing the inner product between two
sparse BoW vectors.

One assumption of this approach is that documents that share more words have
a higher possibility of relatedness or proximity. However, this assumption can be
challenged by creating an example like follows.
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Example 2.2.3. Consider a sample sentence from the Internet:

• NASA reveals its ambitions that humans can set foot on Mars.

Which one of the three below is believed to tell about a different thing of the sample
sentence?

1. United States is planning to send American astronauts to Red Planet.

2. Challenge for the pioneering missions is keeping the crew safe to the destina-
tion, said NASA.

3. Electricity is to motor as ambition is to human.

Figure 2.5. Graphical representation of sentences in a word embedding space. The
Wasserstein barycenter/centroid of three sentences can capture their characteristic com-
position with optimal transport matching.

It is clear that the last sentence of the three is telling a different thing. But if
we count how many co-occurred non-stop words are shared between the sample
sentence and the last sentence, we would easily spot two: “human” and “ambition”,
which is more than the other two candidate sentences. A common strategy to
address the above scenario is to embed all words into a Euclidean space capturing
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the semantics of each word. Two words sharing similar semantics would sit in
nearby locations in the embedding space. By the embedding technique, we can
instead treat a sentence as a point cloud or a discrete distribution. Measuring
the dissimilarity between two sentences becomes measuring the distance between
two discrete distributions. Wasserstein distance is a powerful tool for measuring
semantic dissimilarity between two sentences by principally considering the cross-
word semantic similarity captured by the word embedding vectors. Fig. 2.5 depicts
how Wasserstein space characterizes the compositional structure of sentences. In
particular, we can compute the Wasserstein barycenter/centroid (a concept to be
defined in Chapter 4) to summarize the shared composition.
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Chapter 3 |
Computational Optimal Trans-
port: A Cookbook of Numeri-
cal Methods

3.1 Introduction
An oracle is a computational module in an optimization procedure that is applied
iteratively to obtain certain characteristics of the function being optimized. Typ-
ically, it calculates the value and gradient of loss function l(x,y). In the vast
majority of machine learning models, where those loss functions are decomposable
along each dimension (e.g., Lp norm, KL divergence, or hinge loss), ∇xl(·,y) or
∇yl(x, ·) is computed in O(m) time, m being the complexity of outcome variables
x or y. This part of calculation is often negligible compared with the calculation of
full gradient with respect to the model parameters. But this is no longer the case
in learning problems based on Wasserstein distance due to the intrinsic complexity
of the distance. We will call such problems Wasserstein loss minimization (WLM).
Examples of WLMs include Wasserstein barycenters [2, 8, 11, 19–21], principal
geodesics [22], nonnegative matrix factorization [23,24], barycentric coordinate [25],
and multi-label classification [26].

Wasserstein distance (See Eq. (2.1)) is defined as the cost of matching two
probability measures, originated from the literature of optimal transport (OT) [27].
It takes into account the cross-term similarity between different support points of
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the distributions, a level of complexity beyond the usual vector data treatment, i.e.,
to convert the distribution into a vector of frequencies. It has been promoted for
comparing sets of vectors (e.g. bag-of-words models) by researchers in computer
vision, multimedia and more recently natural language processing [5,9]. However,
its potential as a powerful loss function for machine learning has been underexplored.
The major obstacle is a lack of standardized and robust numerical methods to solve
WLMs. Even to empirically better understand the advantages of the distance is of
interest.

This section will present three numerical approaches for approximately solving
optimal transport problem. They can be used as build blocks for algorithms which
computationally tackle more sophisticated problems formulated by OT, which will
be visited in Chapter 4.

3.2 Problem Formulation
In this section, we present notations, mathematical backgrounds, and set up the
problem of interest.

Definition 3.2.1 (Optimal Transportation, OT). Let p ∈ ∆m1 ,q ∈ ∆m2 , where
∆m is the set of m-dimensional simplex: ∆m

def.= {q ∈ Rm
+ : 〈q,1〉 = 1}. The set

of transportation plans between p and q is defined as Π(p,q) def.= {Z ∈ Rm1×m2 :
Z ·1m2 = p;ZT ·1m1 = q; }. Let M ∈ Rm1×m2

+ be the matrix of costs. The optimal
transport cost between p and q with respect to M is

W (p,q)def.= min
Z∈Π(p,q)

〈Z,M〉 . (3.1)

In particular, Π(·, ·) is often called the coupling set.

Now we relate primal version of (discrete) OT to a variant of its dual version.
One may refer to [1] for the general background of the Kantorovich-Rubenstein
duality. In particular, our formulation introduces an auxiliary parameter CM for
the sake of mathematical soundness in defining Boltzmann distributions.

Definition 3.2.2 (Dual Formulation of OT). Let CM > 0, denote vector [g1, . . . , gm1 ]T

by g, and vector [h1, . . . , hm2 ]T by h. We define the dual domain of OT by
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Ω(M)def.=
{

f = [g; h] ∈ Rm1+m2
∣∣∣

− CM < gi − hj ≤Mi,j, 1 ≤ i ≤ m1, 1 ≤ j ≤ m2

}
. (3.2)

Informally, for a sufficiently large CM (subject to p,q,M), the LP problem Eq. (3.1)
can be reformulated as 1

W (p,q) = max
f∈Ω(M)

〈p,g〉 − 〈q,h〉 . (3.3)

Let the optimum set be Ω∗(M). Then any optimal point f∗ = (g∗,h∗) ∈ Ω∗(M)
constructs a (projected) subgradient such that g∗ ∈ ∂W/∂p and −h∗ ∈ ∂W/∂q .
The main computational difficulty of WLMs comes from the fact that (projected)
subgradient f∗ is not efficiently solvable.

Note that Ω(M) is an unbound set in Rm1+m2 . In order to constrain the feasible
region to be bounded, we alternatively define

Ω0(M)={f = [g; h] ∈ Ω(M) | g1 = 0}. (3.4)

One can show that the maximization in Ω(M) as Eq. (3.3) is equivalent to the
maximization in Ω0(M) because 〈p,1m1〉 = 〈q,1m2〉.

3.3 Sinkhorn-Knopp Algorithm and Bregman Alter-
nating Direction Method of Multiplier
In this section, we will describe two approaches that approximately solve optimal
transport in near-linear time. These two approaches have been used to solve more
sophisticated Wasserstein problems, which will be introduced in later chapters in
this thesis.
Sinkhorn-Knopp Algorithm. Cuturi [28] introduced a smoothed approach to
approximate the original OT and proposed the use of the Sinkhorn-Knopp algorithm
to solve the smoothed problem. In its formulation, the original OT Eq. (3.1) is

1However, for any proper M and strictly positive p,q, there exists CM such that the optimal
value of primal problem is equal to the optimal value of the dual problem. This modification is
solely for an ad-hoc treatment of a single OT problem. In general cases of (p,q,M), when CM is
pre-fixed, the solution of Eq. (3.3) may be suboptimal.
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instead approximated by the following optimization: For some η > 0,

min
Z∈Π(p,q)

〈Z,M〉 − η−1H(Z), (3.5)

where H(Z) is the entropy of joint probability Z. This is called entropic regulariza-
tion in the literature. Cuturi [28] shows that one can approximately solve the mod-
ified problem up to an error tolerance ε′ by call SINKHORN(exp(ηM),Π(p,q), ε′)
(See Algorithm 3.1). In brief, it is an alternating projection procedure which
renormalizes the rows and columns of A in turn so that they match the desired
row and column marginals r and c.

Algorithm 3.1 Sinkhorn algorithm for OT
procedure Sinkhorn(A, Πr,c, ε′)

initialize k = 0
A(0) ← A/‖A‖1, x0 ← 0, y0 ← 0.
while dist(A(k), Πr,c) < ε′ do

k ← k + 1
if k odd then

xi ← log
(

ri

ri(A(k−1))

)
for i ∈ [m1] #ri(·) is the sum of i-th row

xk ← xk−1 + x, yk ← yk−1

else
yi ← log

(
ci

ci(A(k−1))

)
for i ∈ [m2] #ci(·) is the sum of i-th column

yk ← yk−1 + y, xk ← xk−1

end if
A(k) = D(exp(xk))AD(exp(yk)) #D(·) is the diagonal matrix from vector

end while
Output B ← A(k)

end procedure

Let A = exp(ηM). If one measure the dist(A, Πr,c) by ‖r(A)−r‖2 +‖c(A)−c‖2,
Kalantari et al. [29] shows SINKHORN outputs a matrix B satisfying dist(B,
Πr,c)< ε in O (ρ(ε′)−2 log(s/l)) iterations, with s = ∑

ij Aij and l = minijAij and
ρ ≥ ri, cj for all i and j. However, as mentioned by [30], `2 is not an appropriate
measure for simplex constrained probabilities. Adapting the results to `1, we must
take O (max{m1,m2}ρ(ε′)−2log(s/l)) iterations of SINKHORN to output B such
that ‖r(A)− r‖1 + ‖c(A)− c‖1 < ε′. The extra factor of max{m1,m2} is the price
of converting an `2 bound to an `1 bound. Altschuler et al. [30] recently gave a new
analysis for SINKHORN, showing we can obtain an `1 bound in O ((ε′)−2 log(s/l))
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iterations. He also showed the solution Ẑ obtained via Sinkhorn algorithm satisfies

〈Ẑ,M〉 ≤ min
Z∈Π(p,q)

〈Z,M〉+ 2 log n
η

+ 4ε′‖M‖∞,

where n = max{m1,m2}. Finally, let η = 4 logn
ε

and ε′ = ε
8‖M‖∞ , SINKHORN

outputs an approximate solution Ẑ with ε guarantee in the objective, ε′ `1-
guarantee in constraints in O ((ε′)−2(log n+ η‖M‖∞))) Sinkhorn iterations, a.k.a.

O

(
m1m2 log max{m1,m2}‖M‖3

∞
ε3

)
time. Remember each Sinkhorn iteration takes

O(m1m2) time.
The analysis of [30] answered a long-standing problem in this line of research, in

which entropic regularization is used to smooth the classic OT. For computing two
distributions with large support size, Sinkhorn is a favorable technique because it is
proved to have near-linear performance with respect to the support size. However,
the convergence to the true problem is still quite slow for small ε, as it takes roughly
O(ε−3) iterations. This probably explains why researchers have used the smoothed
solution from entropic regularization for its own right.

To approximate the classic OT using Sinkhorn iterations, we must address two
issues. One is the slow convergence rate with respect to the error bound. The other
is that the Sinkhorn algorithm can easily run out of float precisions in practice. To
complement these two issues, we may instead consider a different technique, which
will be introduced next.

It is quite convenient to recover an approximate dual solution from the outputs of
Sinkhorn algorithm. The entropic regularized problem is in fact can be reformulated
via a dual perspective [3]:

max
g,h
〈p,g〉 − 〈q,h〉 − η−1∑

i,j

exp{−η (Mi,j − gi + hj)} (3.6)

Let xT ,yT be the outputs variables updated in Sinkhorn algorithm. Then the
g∗ ≈ −η−1x , h∗ ≈ η−1y are the dual solution [2, 3].

Bregman ADMM. Wang and Banerjee [31] introduced a variant of alternative
direction method of multiplier (ADMM) to solve optimal transport problem with
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provable guarantees. The general idea is to first decouple constraint set Π(p,q) by
rewriting the optimization problem as

min
r(Z1)=p
c(Z2)=q

〈Z1,M〉 s.t. Z1 = Z2. (3.7)

Bregman ADMM updates proceed by the solving the following proxy subprob-
lems.

Z1 := arg min
r(Z1)=p

〈Z1,M〉+ 〈Λ, Z1〉+ ρ ·KL(Z1, Z2)︸ ︷︷ ︸
replace | · |2 with BΦ(·, ·)

Z2 := arg min
c(Z2)=q

−〈Λ, Z2〉+ ρ ·KL(Z2, Z1)

Λ := Λ + ρ(Z1 − Z2)

Note that Bregman ADMM replaces the regular `2 penalty with the Bregman
divergence. Each subproblems are in fact solvable in closed form. Hence the
B-ADMM approach allows a new algorithm for classic OT (See Algorithm 3.2)

Algorithm 3.2 Bregman ADMM for OT (See Matlab notations)
procedure B-ADMM(M , Π(p,q), ρ)

Initialize Z0
2 = pqT

for t = 1, . . . , T do

Z1 ← Zt−1
2 � exp

{
−M + Λt−1

ρ

}
#� is element-wise product.

Zt
1 ← bsxfun(@times, Z1,p./r(Z1))

Z2 ← Zt
1 � exp

{
Λt−1

ρ

}
Zt

2 ← bsxfun(@times, Z2,qT ./c(Z2))
Λt ← Λt−1 + Zt

1 − Zt
2

end for
Output Z̄1 = Z1

1 + . . .+ ZT
1

T
end procedure

Wang and Banerjee [31] gave a general analysis for Bregman ADMM method.
We adapt their results to optimal transport and have the following convergence
guarantees: Suppose the optimal transport have KKT a solution W ∗ = (Z∗,Λ∗),
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Objective Constraint `1

Sinkhorn Õ(T− 1
3 ) Õ(T− 2

3 )
B-ADMM Õ(ρT−1) Õ(√m1m2ρ

−1T−
1
2 )

Table 3.1. Convergence rate for T iterations.

we let
D(W ∗,W t) = KL(Z∗, Zt

2) + 1
ρ2‖Λ

∗ − Λt‖2,

then we have

KL(Zt+1
1 , Zt

2) ≤ D(W ∗,W t)︸ ︷︷ ︸
monotonic nonincreasing

−D(W ∗,W t+1).

Moreover it also presents guaranteed optimality:

〈Z̄T
1 ,M〉 − 〈Z∗,M〉 ≤

ρKL(Z∗, Z0
2)

T
,

‖Z̄T
1 − Z̄T

2 ‖2 ≤
√

2D(W ∗,W 0)
T

,

where Z̄j
T = 1

T

∑T
t=1 Z

t
j, j = 1, 2. Let n = max{m1,m2} Since D(W ∗,W 0) ≤

2 log n+‖Λ∗‖2
2ρ
−2 and KL(Z∗, Z0

2 ) ≤ 2 log n, we let T = 2ρ log nε−1, B-ADMM can
reach an approximate solution with ε guarantee in objective and

√
m1m2

(
ρ−1 + ‖Λ

∗‖2
2

2 log nρ
−3
) 1

2

· ε−
1
2

`1-guarantee in constraints. In other words, B-ADMM takes much less number of
iterations to generate an approximation to the objective function while takes much
more number of iterations to generate an approximation that satisfies a constraint
measurement. Table 3.1 compares Sinkhorn and B-ADMM if the same number of
iterations are budgeted.

In order to recover an approximate dual solution from the outputs of Bregman
ADMM, one may consider the complementary slackness of KKT condition:

Zij(gi − hj −Mij) ≈ 0 (3.8)
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By solving a least square problem, one can find the dual solution in linear time
(from a preconditioned linear system): for some λ > 0,

min
g,h

∑
i,j

Zij(gi − hj −Mij)2 + λ‖g‖2 + λ‖h‖2. (3.9)

3.4 Simulated Annealing

As a long-standing consensus, solving WLMs is challenging [2]. Unlike the usual
optimization in machine learning where the loss and the (partial) gradient can be
calculated in linear time, these quantities are non-smooth and hard to obtain in
WLMs, requiring solution of a costly network transportation problem (a.k.a. OT).
The time complexity, O(m3 logm), is prohibitively high [33]. In contrast to the Lp
or KL counterparts, this step of calculation elevates from a negligible fraction of the
overall learning problem to a dominant portion, preventing the scaling of WLMs
to large data. Recently, iterative approximation techniques have been developed
to compute the loss and the (partial) gradient at complexity O(m2/ε) [28, 31].
However, nontrivial algorithmic efforts are needed to incorporate these methods
into WLMs because WLMs often require multi-level loops [2, 26]. Specifically, one
must re-calculate through many iterations the loss and its partial gradient in order
to update other model dependent parameters.

We are thus motivated to seek for a fast inexact oracle that (i) runs at lower time
complexity per iteration, and (ii) accommodates warm starts and meaningful early
stops. These two properties are equally important for efficiently obtaining adequate
approximation to the solutions of a sequence of slowly changing OTs. The second
property ensures that the subsequent OTs can effectively leverage the solutions
of the earlier OTs so that the total computational time is low. Approximation
techniques with low complexity per iteration already exist for solving a single OT,
but they do not possess the second property. In this paper, we introduce a method
that uses a time-inhomogeneous Gibbs sampler as an inexact oracle for Wasserstein

The work presented in this section has been published in the form of a research paper: Jianbo
Ye, James Z. Wang and Jia Li, “A Simulated Annealing based Inexact Oracle for Wasserstein Loss
Minimization,” Proceedings of the 34th International Conference on Machine Learning (ICML),
Sydney, Australia, Vol 70, pp 3940–3948, August 2017. It was also presented in BIRS-CMO
Workshop [32].
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losses. The Markov chain Monte Carlo (MCMC) based method naturally satisfies
the second property, as reflected by the intuition of physicists that MCMC samples
can efficiently “remix from a previous equilibrium.”

We propose a new optimization approach based on Simulated Annealing (SA) [34,
35] for WLMs where the outcome variables are treated as probability measures. SA
is especially suitable for the dual OT problem, where the usual Metropolis sampler
can be simplified to a Gibbs sampler. To our knowledge, existing optimization
techniques used on WLMs are different from MCMC. In practice, MCMC is known
to easily accommodate warm start, which is particularly useful in the context of
WLMs. We name this approach Gibbs-OT for short. The algorithm of Gibbs-
OT is as simple and efficient as the Sinkhorn’s algorithm — a widely accepted
method to approximately solve OT [28]. We show that Gibbs-OT enjoys improved
numerical stability and several algorithmic characteristics valuable for general
WLMs. By experiments, we demonstrate the effectiveness of Gibbs-OT for solving
optimal transport with Coulomb cost [36] and the Wasserstein non-negative matrix
factorization (NMF) problem [23,24].

3.4.1 Optimal Transport via Gibbs Sampling

Following the basic strategy outlined in the seminal paper of simulated annealing [34],
we present the definition of Boltzmann distribution supported on Ω0(M) below
which, as we will elaborate, links the dual formulation of OT to a Gibbs sampling
scheme (Algorithm 3.3 below).

Definition 3.4.1 (Boltzmann Distribution of OT). Given a temperature parameter
T > 0, the Boltzmann distribution of OT is a probability measure on Ω0(M) ⊆
Rm1+m2−1 such that

p(f ; p,q) ∝ exp
[ 1
T

(〈p,g〉 − 〈q,h〉)
]
. (3.10)

It is a well-defined probability measure for an arbitrary finite CM > 0.

The basic concept behind SA states that the samples from the Boltzmann
distribution will eventually concentrate at the optimum set of its deriving problem
(e.g. W (p,q)) as T → 0. However, since the Boltzmann distribution is often difficult
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to sample, a practical convergence rate remains mostly unsettled for specific MCMC
methods.

Because Ω(M) defined by Eq. (3.2) (also Ω0) has a conditional independence
structure among variables, a Gibbs sampler can be naturally applied to the Boltz-
mann distribution defined by Eq. (3.10). We summarize this result below.

Proposition 3.4.1. Given any f = (g; h) ∈ Ω0(M) and any CM > 0, we have for
any i and j,

gi ≤ Ui(h) def.= min
1≤j≤m2

(Mi,j + hj) , (3.11)

hj ≥ Lj(g) def.= max
1≤i≤m1

(gi −Mi,j) . (3.12)

and

gi > L̂i(h) def.= max
1≤j≤m2

(−CM + hj) , (3.13)

hj < Ûj(g) def.= max
1≤i≤m1

(CM + gi) . (3.14)

Here Ui = Ui(h) and Lj = Lj(g) are auxiliary variables. Suppose f follows the
Boltzmann distribution by Eq. (3.10), gi’s are conditionally independent given h,
and likewise hj’s are also conditionally independent given g. Furthermore, it is
immediate from Eq. (3.10) that each of their conditional probabilities within its
feasible region (subject to CM) satisfies

p(gi|h) ∝ exp
(
gipi
T

)
, L̂i(h) < gi ≤ Ui(h), (3.15)

p(hj|g) ∝ exp
(
−hjqj

T

)
, Lj(g) ≤ hj < Ûj(g), (3.16)

where 2 ≤ i ≤ m1 and 1 ≤ j ≤ m2.

Remark 2. As CM → +∞, Ûj(g)→ +∞ and L̂i(h)→ −∞. For 2 ≤ i ≤ m1 and
1 ≤ j ≤ m2, one can approximate the conditional probability p(gi|h) and p(hj|g)
by exponential distributions.

By Proposition. 3.4.1, our proposed time-inhomogeneous Gibbs sampler is given
in Algorithm 3.3. Specifically in Algorithm 3.3, the variable g1 is fixed to zero by
the definition of Ω0(M). But we have found in experiments that by calculating U (t)

1
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Algorithm 3.3 Gibbs Sampling for Optimal Transport
Given f (0) ∈ Ω0(M), p ∈ ∆m1 and q ∈ ∆m2 , and T (1), . . . , T (2N) > 0, for t =
1, . . . , N , we define the following Markov chain

1. Randomly sample

θ1, . . . , θm2
i.i.d.∼ Exponential(1).

For j = 1, 2, . . . ,m2, letL
(t)
j := max1≤i≤m1

(
g

(t−1)
i −Mi,j

)
h

(t)
j := L

(t)
j + θj · T (2t−1)/qj

(3.17)

2. Randomly sample

θ2, . . . , θm1
i.i.d.∼ Exponential(1).

For i = (1), 2, . . . ,m1, letU
(t)
i := min1≤j≤m2

(
Mi,j + h

(t)
j

)
g

(t)
i := U

(t)
i − θi · T (2t)/pi

(3.18)

and sampling g(t)
1 in Algorithm 3.3 according to Eq. (3.18), one can still generate

MCMC samples from Ω(M) such that the energy quantity 〈p,g〉− 〈q,h〉 converges
to the same distribution as that of MCMC samples from Ω0(M). Therefore, we will
not assume g1 = 0 from now on and develop analysis solely for the unconstrained
version of Gibbs-OT.

Fig. 3.1 illustrates the behavior of the proposed Gibbs sampler with a cooling
schedule at different temperatures. As T decreases along iterations, the 95%
percentile band for sample f becomes thinner and thinner.

Remark 3. Algorithm 3.3 does not specify the actual cooling schedule, nor does the
analysis of the proposed Gibbs sampler in Theorem 3.4.2. We have been agnostic
here for a reason. In the SA literature, cooling schedules with guaranteed optimality
are often too slow to be useful in practice. To our knowledge, the guaranteed
rate of SA approach is worse than the combinatorial solver for OT. As a result,
a well-accepted practice of SA for many complicated optimization problems is to
empirically adjust cooling schedules, a strategy we take for our experiments.
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Figure 3.1. The Gibbs sampling of the proposed SA method. From left to right is
an illustrative example of a simple 1D optimal transportation problem with Coulomb
cost and plots of variables for solving this problem at different number of iterations
∈ {20, 40, 60} using the inhomogeneous Gibbs sampler. Particularly, the 95% percentile
of the exponential distributions are marked by the gray area.

Remark 4. Although the exact cooling schedule is not specified, we still provide
a quantitative upper bound of the chosen temperature T at different iterations
in Sec. 3.4.3 Eq. (3.25). One can calculate such bound at the cost of m logm at
certain iterations to check whether the current temperature is too high for the used
Gibbs-OT to accurately approximate the Wasserstein gradient. In practice, we
find this bound helps one quickly select the beginning temperature of Gibbs-OT
algorithm.

Definition 3.4.2 (Notations for Auxiliary Statistics). Besides the Gibbs coordi-
nates g and h, the Gibbs-OT sampler naturally introduces two auxiliary variables,
U and L. Let L(t) =

[
L

(t)
1 , . . . , L(t)

m2

]T
and U(t) =

[
U

(t)
1 , . . . , U (t)

m1

]T
. Likewise, denote

the collection of g(t)
i and h(t)

j by vectors g(t) and h(t) respectively. The following
sequence of auxiliary statistics

[. . . , z2t−1, z2t, z2t+1, . . . , ] def.=

. . . ,
 L(t)

U(t−1)

 ,
L(t)

U(t)

 ,
L(t+1)

U(t)

 , . . .
 (3.19)

for t = 1, . . . , N is also a Markov chain. They can be redefined equivalently
by specifying the transition probabilities p(zn+1|zn) for n = 1, . . . , 2N , a.k.a., the
conditional p.d.f. p(U(t)|L(t)) for t = 1, . . . , N and p(L(t+1)|U(t)) for t = 1, . . . , N−1.

One may notice that the alternative representation converts the Gibbs sampler
to one whose structure is similar to a hidden Markov model, where the g,h chain
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is conditional independent given the U,L chain and has (factored) exponential
emission distributions. We will use this equivalent representation in Sec. 3.4.3 and
develop analysis based on the U,L chain accordingly.

Remark 5. We now consider the function

V (x,y)def.= 〈p,x〉 − 〈q,y〉 ,

and define a few additional notations. Let V (Ut′ ,Lt) be denoted by V (zt+t′),
where t′ = t or t−1. If g,h are independently resampled according to Eq. (3.17)
and (3.18), we will have the inequalities that

E [V (g,h)|zn] ≤ V (zn) .

Both V (z) and V (g,h) converges to the exact loss W (p,q) at the equilibrium of
Boltzmann distribution p(f ; p,q) as T → 0. 2

3.4.2 Gibbs-OT: An Inexact Oracle for WLMs

In this section, we introduce a non-standard SA approach for the general WLM
problems. The main idea is to replace the standard Boltzmann energy with an
asymptotic consistent upper bound, outlined in our previous section. Let

R(θ) :=
|D|∑
i=1

W (pi(θ),qi(θ))

be our prototyped objective function, where D represents a dataset, pi,qi are
prototyped probability densities for representing the i-th instance. We now discuss
how to solve minθ∈Θ R(θ).

To minimize the Wasserstein losses W (p,q) approximately in such WLMs,
we propose to instead optimize its asymptotic consistent upper bound E[V (z)]
at equilibrium of Boltzmann distribution p(f ; p,q) using its stochastic gradients:
U ∈ ∂V (z)/∂p and −L ∈ ∂V (z)/∂q . Therefore, one can calculate the gradient

2The conditional quantity V (zn) − V (g,h)|zn is the sum of two Gamma random variables:
Gamma(m1, 1/T (2t)) + Gamma(m2, 1/T (2t′+1)) where t′ = t or t′ = t− 1.
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approximately:

∇θR ≈
|D|∑
i=1

[Jθ(pi(θ))Ui − Jθ(qi(θ))Li]

where Jθ(·) is the Jacobian, Ui, Li are computed from Algorithm 3.3 for the problem
W (pi,qi) respectively. Together with the iterative updates of model parameters θ,
one gradually anneals the temperature T . The equilibrium of p(f ; p,q) becomes
more and more concentrated. We assume the inexact oracle at a relatively higher
temperature is adequate for early updates of the model parameters, but sooner or
later it becomes necessary to set T smaller to better approximate the exact loss.

It is well known that the variance of stochastic gradient usually affects the rate
of convergence. The reason to replace V (g,h) with V (z) as the inexact oracle
(for some T > 0) is motivated by the same intuition. The variances of MCMC
samples g(t)

i , h
(t)
j of Algorithm 3.3 can be very large if pi/T and qj/T are small,

making the embedded first-order method inaccurate unavoidably. But we find
the variances of max/min statistics U (t)

i , L
(t)
j are much smaller. Fig. 3.1 shows

an example. The bias introduced in the replacement is also well controlled by
decreasing the temperature parameter T . For the sake of efficiency, we use a very
simple convergence diagnostics in the practice of Gibbs-OT. We check the values of
V (z(2t)) such that the Markov chain is roughly considered mixed if every τ iteration
the quantity V (z(2t)) (almost) stops increasing (τ=5 by default), say, for some t,

V (z(2t))− V (z(2(t−τ))) < 0.01τT · V (z(2t)),

we terminate the Gibbs iterations.

3.4.3 Theoretical Properties of Gibbs-OT

We develop quantitative concentration bounds for Gibbs-OT in a finite number of
iterations in order to understand the relationship between the temperature schedule
and the concentration progress. The analysis also guides us to adjust cooling
schedule on-the-fly, as will be shown. Proofs are provided in Supplement.
Preliminaries. Before characterizing the properties of Gibbs-OT by Definition 3.3,
we first give the analytic expression for p(zn+1|zn). Let G(·) : [−∞,∞] 7→ [0, 1] be
the c.d.f. of standard exponential distribution. Because L(t+1)

j < x by definition
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IBP, rho=0.1/N IBP, rho=0.5/N IBP, rho=2.0/N B-ADMM SimulAnn

l=1
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l=50
l=200

l=1000
l=5000

Figure 3.2. A simple example for OT between two 1D distribution: The solutions
by Iterative Bregman Projection, B-ADMM, and Gibbs-OT are shown in pink, while
the exact solution by linear programming is shown in green. Images in the rows from
top to bottom present results at different iterations {1, 10, 50, 200, 1000, 5000}; The left
three columns are by IBP with ε = {0.1/N, 0.5/N, 2/N}, where [0, 1] is discretized with
N = 128 uniformly spaced points. The fourth column is by B-ADMM (with default
parameter τ0 = 2.0). The last column is the proposed Gibbs-OT, with a geometric cooling
schedule. With a properly selected cooling schedule, one can achieve fast convergence of
OT solution without comprising much solution quality.
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Figure 3.3. The recovered primal solutions for two uniform 1D distribution with
Coulumb cost. The approximate solutions are shown in pink, while the exact solution by
linear programming is shown in green. Top row: entropic regularization with ε = 0.5/N .
Bottom row: Gibbs-OT. Images in the rows from left to right present results at different
max iterations {1, 10, 50, 200, 1000, 2000, 5000}.

⇔ ∀i, g
(t)
i −Mi,j < x, the c.d.f. of L(t+1)

j |U(t) reads

Pr
(
L

(t+1)
j <x

∣∣∣U(t)
)

=
m1∏
i=1

1−G
−x−Mi,j + U

(t)
i

T (2t)/pi

 .
Likewise, the c.d.f. of U (t)

i |L(t) reads

Pr
(
U

(t)
i < x

∣∣∣L(t)
)

=
m2∏
j=1

G

x−Mi,j − L(t)
j

T (2t−1)/qj

 .
With some calculation, the following can be shown. As a note, this lemma

provides an intermediate result whose main purpose is to lay down the definition of
φ

(t)
j and ϕ(t)

i , which are then used in defining O(z, T ) (Eq. (3.22)) and rn (Eq. (3.24))
and in Theorem 3.4.2.

Lemma 3.4.1. (i) Given 1 ≤ j ≤ m2 and 1 ≤ t ≤ N , let the sorted index of
{U (t)

i −Mi,j}m1
i=1 be permutation {σ(i)}m1

i=1 such that sequence {U (t)
σ(i) −Mσ(i),j}m1

i=1

are monotonically non-increasing. Define the auxiliary quantity

φ
(t)
j

def.=
m1∑
k=1

(1− µk)
∏k−1
i=1 µi∑k

i=1 pσ(k)
, (3.20)

where
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1 ≥ µi
def.= exp


∑k
i=1 pσ(k)

T (2t)

[ (
Uσ(i+1) −Mσ(i+1),j

)
−
(
Uσ(i) −Mσ(i),j

) ]
for i = 1, . . . ,m1 − 1, and µm1

def.= 0 . Then, the conditional expectation

E
[
L

(t+1)
j

∣∣∣U(t)
]

= U
(t)
σ(1) −Mσ(1),j − φ(t)

j T
(2t) .

In particular, we denote σ(1) by I tj or I(j, t) .
(ii) Given 1 ≤ i ≤ m1 and 1 ≤ t ≤ N , let the sorted index of {Mi,j + Lj}m2

j=1 be
permutation {σ(j)}m2

j=1 such that the sequence {Mi,σ(j) +L
(t)
σ(j)}

m2
j=1 are monotonically

non-decreasing. Define the auxiliary quantity

ψ
(t)
i

def.=
m2∑
k=1

(1− λk)
∏k−1
j=1 λk∑k

j=1 qσ(j)
, (3.21)

where

1 ≥ λj
def.= exp


∑k
j=1 qσ(j)

T (2t−1)

[ (
Mi,σ(j) + L

(t)
σ(j)

)
−

(
Mi,σ(j+1) + L

(t+1)
σ(j)

) ]
for i = 1, . . . ,m2 − 1 and λm2 = 0 . Then, the conditional expectation

E
[
U

(t)
i

∣∣∣L(t)
]

= Mi,σ(1) + L
(t)
σ(1) + ψ

(t)
i T

(2t−1) .

In particular, we denote σ(1) by J ti or J(i, t) .

We note that the calculation of Eq. (3.20) and Eq. (3.21) needs O(m1 logm1)
and O(m2 logm2) time respectively. By a few additional calculations, we introduce
the notation O(·, ·):

O(z2t, T (2t)) def.= E
[
〈q,L(t)〉 − 〈q,L(t+1)〉

∣∣∣U(t),L(t)
]

=
m2∑
j=1

(
MIt

j ,j
+ L

(t)
j − U

(t)
It

j
+ φ

(t)
j T

(2t)
)
qj

O(z2t−1, T (2t−1)) def.= E
[
〈p,U(t)〉 − 〈p,U(t−1)〉

∣∣∣U(t−1),L(t)
]

=
m1∑
i=1

(
Mi,Jt

i
+ L

(t)
Jt

i
− U (t−1)

i + ψ
(t)
i T

(2t−1)
)
pi

(3.22)
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Note that O(zn, T n) = E [V (zn+1)− V (zn)|zn] .
Recovery of Approximate Primal Solution. An approximate (m1+m2)-sparse
primal solution3 can be recovered from zn at n = 2t by

Z ≈ 1
2sparse(1 : m1, J(1 : m1, t),p)+

1
2sparse(I(1 : m2, t), 1 : m2,q) ∈ Rm1×m2 . (3.23)

Concentration Bounds. We are interested in the concentration bound related
to V (zn) because it replaces the true Wasserstein loss in WLMs. Given U(0) (i.e.,
z1 is implied), for n = 1, . . . , 2N , we let

rn = V (zn)−
n−1∑
s=1
O(zs, T (s)) . (3.24)

This is crucial for one who wants to know whether the cooling schedule is too fast
to secure the suboptimality within a finite budget of iterations. The following
Theorem 3.4.2 gives a possible route to approximately realize this goal. It bounds
the difference between

V (zn)− V (z1) and
n−1∑
s=1

E
[
V (zs+1)− V (zs)|zs

]
,

the second of which is a quantitative term representing sum of a sequence. We see
that O(zs, T (s)) = E [V (zs+1)− V (zs)|zs] = 0 if and only if T (s) = T (zs)def.=


− 1
〈φ(t),q〉

m2∑
j=1

qj

[
MIt

j ,j
+ L

(t)
j − U

(t)
It

j

]
if s=2t

− 1
〈ψ(t),p〉

m1∑
i=1

pi
[
Mi,Jt

i
+ L

(t)
Jt

i
− U (t−1)

i

]
if s=2t−1

(3.25)

In the practice of Gibbs-OT, choosing the proper cooling schedule for a specific
WLM needs trial-and-error. Here we present a heuristics that the temperature
T (s) is often chosen and adapted around ηT (zs), where η ∈ [0.1, 0.9]. We have
two concerns regarding the choice of temperature T : First, in a WLM, the cost
V (z) is to be gradually minimized, hence a temperature T smaller than T (zs)

3The notation of sparse(·, ·, ·) function is introduced under the syntax of MATLAB: http:
//www.mathworks.com/help/matlab/ref/sparse.html
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at every iteration ensures that the cost is actually decreased by expectation, i.e.,
E[V (zn)− V (z1)] < 0; second, if T is too small, it takes many iterations to reach a
highly accurate equilibrium, which might not be necessary for a single outer level
step of parameter update.

Theorem 3.4.2 (Concentration bounds for finite time Gibbs-OT). First, rn (by
definition) is a martingale subject to the filtration of z1, . . . , zn. Second, given a
ε ∈ (0, 1), for n = 1, . . . , 2N−1 if we choose the temperature schedule T (1), . . . , T (2N)

such that (i) Cn · T (n) ≤ an, or (ii) ∃γ > 0, log
(

2N max{m1,m2}
ε

)
· T (n) +Dn ≤ γan,

where {an ≥ 0} is a pre-determined array. Here for t = 1, . . . , N,

C2t−1 def.= 〈ψ(t),p〉 ,

C2t def.= 〈φ(t),q〉 ,

D2t−1 def.=
m1∑
i=1

piR
(
MT

i,· + L(t); q
)
,

D2t def.=
m2∑
i=1

qjR
(
M·,j −U(t); p

)
,

where Mi,· and M·,j represents the i-th rows and j-th columns of matrix M respec-
tively, ψ(t) and φ(t) are defined in Lemma 3.4.1, and regret function R(x; w) def.=∑m

i=1wixi −min1≤i≤m xi for any w ∈ ∆m and x ∈ Rm. Then for any K > 0, we
have

Pr
(
r2N<r1−K

)
≤ exp

[
− K2

2∑2N−1
i=1 a2

n

]
, (3.26)

or

Pr
(
r2N>r1+γK

)
≤ exp

[
− K2

2∑2N−1
i=1 a2

n

]
+ ε . (3.27)

Remark 6. The bound obtained is a quantitative Hoeffding bound, not a bound
that guarantees contraction around the true solution of dual OT. Nevertheless, we
argue that this bound is still useful in investigating the proposed Gibbs sampler
when the temperature is not annealed to zero. Particularly, the bound is for cooling
schedules in general, i.e., it is more applicable than a bound for a specific schedule.
There has long been a gap between the practice and theory of SA despite of its
wide usage. Our result likewise falls short of firm theoretical guarantee from the
optimization perspective, as with the usual application of SA.
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3.4.4 Proof of Lemmas and Theorem

The minimum of n independent exponential random variables with different param-
eters has computatable formula for its expectation. The result immediately lays
out the proof of Lemma 3.4.1.

Lemma 3.4.3. Suppose we have n independent exponential random variables ei
whose c.d.f. is by fi(x) = min{exp(ωi(x− zi)), 1}. Without lose of generality, we
assume z1 ≥ z2 ≥ ... ≥ zn, then let zn+1 = −∞, hi = exp

[∑i
j=1 ωj(zi+1 − zi)

]
≤ 1

(with hn = 0, zn+1hn = 0), we have

E [max{e1, . . . , en}] = z1 −
n∑
i=1

(1− hi)
∏i−1
j=1 hi∑i

j=1 ωj
.

Proof. The c.d.f. of max{e1, . . . , en} is F (x) = ∏n
i=1 fi(x) which is piece-wise

smooth with interval (zi+1, zi), we want to calculate
∫∞
−∞ xdF (x) .

∫ ∞
−∞

xdF (x) =
n∑
i=1

∫ zi

zi+1
xdF (x) + 0

=
n∑
i=1

∫ zi

zi+1
xd exp

 i∑
j=1

ωj(x− zj)


=
n∑
i=1

∫ zi

zi+1

 i∑
j=1

ωj

x exp
 i∑
j=1

ωj(x− zj)
 dx

=
n∑
i=1

{(
zi −

1∑i
j=1 ωj

)
exp

 i∑
j=1

ωj(zi − zj)


−
(
zi+1 −

1∑i
j=1 ωj

)
exp

 i∑
j=1

ωj(zi+1 − zj)
}

=
n∑
i=1

[
(zi − zi+1hi)−

1− hi∑i
j=1 ωj

]
i−1∏
j=1

hi

=
n∑
i=1

zi i−1∏
j=1

hi − zi+1

i∏
j=1

hi

− n∑
i=1

(1− hi)
∏i−1
j=1 hi∑i

j=1 ωj

= z1 −
n∑
i=1

(1− hi)
∏i−1
j=1 hi∑i

j=1 ωj
.

36



Therefore Lemma 3.4.1 is proved up to trivial calculation using the above
Lemma 3.4.3. In order to further prove Lemma 3.4.5, we also have (by definition of
F (x)).

Lemma 3.4.4. Subject to the setup of Lemma 3.4.3, we also have

max{e1, . . . , en} ≤ z1 ,

and
F (x) ≤ min

{
exp

[
n∑
i=1

ωi(x− z∗)
]
, 1
}
,−∞ < x <∞,

where z∗ =
∑n
i=1 ωizi∑n
i=1 ωi

.

Therefore, based on the observation of Lemma 3.4.4, the tail probability
Pr(max{e1, . . . , en} < x) is upper bounded by the probability of an exponential
random variable, which lead us to the proof of Lemma 3.4.5.

Lemma 3.4.5. Note that Eq. (3.22) implies E [rn+1 − rn|z1, . . . , zn] = 0 for t =
1, . . . , 2N . Therefore, {rn} is a (discrete time) martingale subject to the filtration
of {zn}. (Recall the notation by Eq. (3.19).) Moreover, we have the following two
bounds. First, we can establish the left hand side bound for {rn+1 − rn}2N−1

n=1 :

rn − rn+1 ≤ Cn · T (n),

where for t = 1, . . . , N

C2t−1 def.= 〈ψ(t),p〉 and C2t def.= 〈φ(t),q〉. (3.28)

Second, we also bound on the right hand side. That said, for any 1 > ε > 0, we
have

Pr
(
∃n ∈ {1, . . . , 2N}, s.t. rn+1 − rn

≥ log
(

2N max{m1,m2}
ε

)
· T (n) +Dn

∣∣∣∣z1, . . . , zn
)
≤ ε, (3.29)
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where for t = 1, . . . , N

D2t−1 def.=
m1∑
i=1

piR
(
MT

i,· + L(t); q
)

(3.30)

D2t def.=
m2∑
i=1

qjR
(
M·,j −U(t); p

)
, (3.31)

where Mi,· and M·,j represents the i-th rows and j-th columns of matrix M respec-
tively.

Proof. On one hand, because for each i ∈ {1, . . . ,m1}, U (t)
i |L(t) is lower bounded

by Mi,J(i,t) + L
(t)
J(i,t) (Lemma 3.4.4), and for each j ∈ {1, . . . ,m2}, L(t)

j |U(t−1) is
upper bounded by U (t−1)

I(j,t) −MI(j,t),j (Lemma 3.4.4), we easily (by definition) have
rn+1|z1, . . . , zn is lower bounded by rn − Cn · T (n).

On the other hand, we have if rn+1 − rn ≥ log(1/ε0) · T (n) +Dn|z1, . . . , zn for
some ε0 > 0, then at least one of U (t)

i (or L(t)
j ) violates the bound log(1/ε0) · T (n) +

R(MT
i,· + L(t); q) (or log(1/ε0) · T (n) +R(M·,j −U(t); p)), whose probability using

Lemma 3.4.4 is shown to be less than ε0. Therefore, we have for each n

Pr(rn+1 − rn ≥ log(1/ε0) · T (n) + Dn|z1, . . . , zn) ≤ max{m1,m2}ε0 , (3.32)

and

Pr(∃n, rn+1 − rn ≥ log(1/ε0) · T (n) + Dn|z1, . . . , zn) ≤ 2N max{m1,m2}ε0 ,

(3.33)

Let ε = 2N max{m1,m2}ε0 , which concludes our result.

Given Lemma 3.4.5, we can prove Theorem 3.4.2 by applying the classical
Azuma’s inequality for the left-hand side bound, and applying one of its extensions
(Proposition 34 in (Tao and Vu, 2015)) for the right-hand side bound. Remark
that Theorem 3.4.2 is about a single OT. For multiple different OTs, which share
the same temperature schedule, one can have asymptotic bounds using the Law
of Large Numbers due to the fact that their Gibbs samplers are independent with
each other. Let Rn = 1

S

∑S
k=1 r

n
k , where rnk is defined by Eq. (3.24) for sample k.

Since for any ε > 0, one has P (|Rn+1 −Rn| > ε) → 0 , as S → ∞, one can have
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the asymptotic concentration bound for R2N that for any ε1, ε2 > 0 , there exists S
such that P (

∣∣∣R2N −R1
∣∣∣ > ε1) ≤ exp

(
− 1

2Nε2

)
.

3.5 Toy OT Examples
1D Case with Euclidean Cost. We first illustrate the differences between the
approximate primal solutions computed by different methods by replicating a toy
example in [21]. The toy example calculates the OT between two 1D two-mode
distributions. We visualize their solved coupling as a 2D image in Fig. 3.2 at the
budgets in terms of different number of iterations. Given their different convergence
behaviors, when one wants to compromise with using pre-converged primal solutions
in WLMs, he or she has to account for the different results computed by different
numerical methods, even though they all aim at the Wasserstein loss.

As a note, Sinkhorn, B-ADMM and Gibbs-OT share the same computational
complexity per iteration. The difference in their actual CPU time comes from
the different arithmetic operations used. B-ADMM may be the slowest because
it requires log() and exp() operations. When memory efficiency is of concern,
both the implementations of Sinkhorn and Gibbs-OT can be modified to take only
O(m1 +m2) additional memory besides the space for caching the cost matrix M .
Two Electrons with Coulomb Cost in DFT. In quantum mechanics, Coulomb
cost (or electron-electron Coulomb repulsion) is an important energy functional
in Density Functional Theory (DFT). Numerical methods that solve the multi-
marginal OT problem with unbounded costs remains an open challenge in DFT [36].
We consider two uniform densities on 1D domain [0, 1] with Coulomb cost c(x, y) =
1/|x− y| which has analytic solutions. Coulumb cost is different from the usual
metric cost in the OT literature, which is unbounded and singular at x = y. As
observed in [36], the entropic regularized primal solution becomes more concentrated
at boundaries, which is not physically plausible. This effect is not observed in the
Gibbs-OT solution as shown in Fig. 3.3. As shown by Fig 3.1, the variables U,V
in computation are always in bounded range (with an overwhelming probability),
thus the algorithm does not endure any numerical difficulties.

For entropic regularization [21,36], we empirically select the minimal ε which
does not cause numerical overflow before 5000 iterations (in which ε = 0.5/N). For
Gibbs-OT, we use a geometric temperature scheme such that T = 2.0(1/l4)n/l/N
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at the n-th iteration, where l is the max iteration number. For the unbounded
Coulomb cost, Bregman ADMM [31] does not converge to a solution close to the
true optimum.
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Chapter 4 |
Unsupervised Wasserstein Learn-
ing

4.1 Overview
This chapter will be devoted to two unsupervised learning models for distributions.
One is about clustering and the other is about component analysis. Like conventional
methods for vectors such as K-means and non-negative matrix factorization, One
can imagine there must exist counterparts in the space of Wasserstein learning.

4.2 Wasserstein Barycenter Problem and Discrete Dis-
tribution Clustering
Distribution clustering can be subjected to different affinity definitions. For example,
Bregman clustering pursues the minimal distortion between the cluster prototype,
called the Bregman representative, and cluster members according to a certain
Bregman divergence [37]. In comparison, D2-clustering is an extension of K-means to
discrete distributions under the Wasserstein distance [19], and the cluster prototype
is an approximate Wasserstein barycenter with a sparse finite support set. In the
D2-clustering framework, solving the cluster prototype or the centroid for discrete
distributions under the Wasserstein distance is computationally challenging [2,11,38].
In order to scale up the computation of D2-clustering, a divide-and-conquer approach
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has been proposed [38], but the method is ad-hoc from an optimization perspective.
A standard ADMM approach has also been explored [11], but its efficiency is still
inadequate for large datasets. Although fast computation of Wasserstein distances
has been much explored [28,31,39], how to perform top-down clustering efficiently
based on the distance has not.

The centroid of a collection of distributions minimizing the average pth-order
power of the Lp Wasserstein distance is called Wasserstein barycenter [20]. In
the D2-clustering algorithm [19], the 2nd-order Wasserstein barycenter is simply
referred to as a prototype or centroid, and is solved for the case of an unknown
support with a pre-given cardinality. The existence, uniqueness, regularity and
other properties of the 2nd-order Wasserstein barycenter have been established
mathematically for continuous measures in the Euclidean space [20]. The situation
for discrete distributions, however, is more intricate, as will be explained later.

Given N arbitrary discrete distributions each with m̄ support points, their true
Wasserstein barycenter in theory can be solved via linear programming [20, 40].
This approach is logical because the support points of the Wasserstein barycenter
can only locate at a finite (yet huge) number of possible positions. Yet, solving
the true discrete barycenter quickly becomes intractable even for a rather small
number of distributions containing only 10 support points each. Anderes et al. [40]
made important theoretical progress on this particular challenge by proving that
the actual support of a true barycenter of N such distributions is extremely sparse,
with cardinality m no greater than m̄N . Unfortunately, the complexity of the
problem is not reduced practically because so far there is no theoretically ensured
way to sift out the optimal sparse locations. Anderes et al.’s approach, though,
does backup the practice of assuming a pre-selected number of support points in a
barycenter as an approximation to the true solution.

To achieve good approximation, two computational strategies are useful in an
optimization framework.

(i) Carefully select beforehand a large and representative set of support points
as an approximation to the support of the true barycenter (e.g., K-means).

(ii) Allow the support points in a barycenter to adjust positions at every τ

iterations.

The first strategy of fixing the support of a barycenter can yield adequate approxi-
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mation quality in low dimensions (e.g. 1D/2D histogram data) [2, 21], but can face
the challenge of an exponentially growing support size when the dimension increases.
The second strategy allows one to use a possibly much smaller number of support
points in a barycenter to achieve the same level of accuracy [2,11,19,38]. Because the
time complexity per iteration of existing iterative methods is O(m̄mN), a smaller
m can also save much computation, and the extra amount of time O(m̄mdN/τ)
can be used to recalculate the distance matrices. In the extreme case when the
barycenter support size is set to one (m = 1), D2-clustering reduces to K-means on
the distribution means, which is a meaningful way of data reduction in its own right.
Our experiments indicate that in practice a large m in D2-clustering is usually
unnecessary (see Section 4.3.6 for related discussions).

In applications on high-dimensional data, optimizing the support points is
preferred to fixing them from the beginning. This option, however, leads to a
non-convex optimization problem. Our work aims at developing practical numerical
methods. In particular, our method optimizes jointly the locations and weights
of the support points in a single loop without resorting to a bi-level optimization
reformulation, as was done in earlier work [2, 19].

4.2.1 Discrete Wasserstein Barycenter in Different Data Set-
tings

Recently, a series of works have been devoted to solving the Wasserstein barycenter
given a set of distributions (e.g. [2, 3, 11, 21, 41]). How our method compares
with the existing ones depends strongly on the specific data setting. We discuss
the comparisons in details below and promote the use of our new method, AD2-
clustering.

In [2, 21, 28], novel algorithms have been developed for solving the Wasserstein
barycenter by adding an entropy regularization term on the optimal transport
matching weights. The regularization is imposed on the transport weights, but not
the barycenter distribution. In particular, iterative Bregman projection (IBP) [21]
can solve an approximation to the Wasserstein barycenter. IBP is highly memory
efficient for distributions with a shared support set (e.g. histogram data), with
a memory complexity O((m + m̄)N). In comparison, our modified B-ADMM
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approach is of the same time complexity, but requires O(mm̄N) memory. If N is
large, memory constraints can limit our approach to problems with relatively small
m or m̄. While the first strategy may not meet the memory constraint, the second
approximation strategy is crucial for reaching high accuracy with our approach.
Conventional OT literature emphasizes computing the Wasserstein barycenter for
a small number of instances with dense representations (e.g. [42,43]); and IBP is
more suitable. Yet in many machine learning and signal processing applications,
each instance is represented by a discrete distribution with a sparse finite support
set (i.e., m̄ is small). The memory limitation of B-ADMM can be avoided via
parallelization until the time allocation is spent. Our focus is thus to achieve
scalability in N .

As demonstrated by experiments, B-ADMM has advantages over IBP that
motivate its usage in our algorithm. If the distributions do not share the support
set, IBP has the same memory complexity O(mm̄N) (for caching the distance matrix
per instance) as our approach has. In addition, B-ADMM [31], based on which our
approach is developed, has the following advantages: (1) It yields the exact OT
and distance in the limit of iterations. Note that the ADMM parameter does not
trade off the convergence rate. (2) It requires little tuning of hyper-parameters and
easily accommodates warm starts (to be illustrated later), which are valuable traits
for the task of D2-clustering. (3) It works well with single-precision floats, and thus
it is not restricted by the machine precision constraint. In contrast, IBP requires
more tuning and may encounter precision overflow which is hard to address. Our
experiments show that when its coupling solutions are used, the resulting discrete
Wasserstein barycenters with sparse finite support sets are not as accurate as those
by B-ADMM (see [21] and our experiments).1

Our main algorithm is inspired by the B-ADMM algorithm of Wang and Baner-
jee [31] for solving OT fast. They developed the two-block variant of ADMM [44]
along with Bregman divergence to solve OT when the number of support points is
extremely large. Its algorithmic relation to IBP [21] is discussed in Section 4.4. The
OT problem at a moderate scale can in fact be efficiently handled by state-of-the-art
LP solvers [45]. As demonstrated by the line of work on solving the barycenter,
optimizing the Wasserstein barycenter is rather different from computing the dis-
tance. Whereas naïvely adapting the B-ADMM to Wasserstein barycenter does not

1Here “accurate” means close to a local minimizer of sum of the (squared) Wasserstein distances.
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result in a proper algorithm, our modified B-ADMM algorithm effectively addresses
the Wasserstein barycenter problem. The modification we made on B-ADMM is
necessary. Although the modified B-ADMM approach is not guaranteed to con-
verge to a local optimum, it often yields a solution very close to the local optimum.
The new method is shown empirically to achieve higher accuracy than IBP or its
derivatives when distributions are supported on finite sets.

Finally, we note that although solving a single barycenter for a fixed set is a
key component in D2-clustering, the task of clustering per se bears some extra
technical subtleties. In a clustering setup, the partition of samples varies over the
iterations, and a sequence of Wasserstein barycenters are solved. We found that the
robustness with respect to the hyper-parameters in the optimization algorithms is
as important as the speed of solving one centroid because tuning these parameters
over many iterations of different partitions is impractical.

4.2.2 D2-Clustering

Consider discrete distributions with sparse finite support specified by a set of
support points and their associated probabilities, a.k.a. weights:

{(w1, x1), . . . , (wm, xm)},

where ∑m
i=1 wi = 1 with wi > 0, and xi ∈M for i = 1, . . . ,m. Usually, M = Rd is

the d-dimensional Euclidean space with the Lp norm, and xi’s are also called support
vectors. M can also be a symbolic set provided with symbol-to-symbol dissimilarity.
The Wasserstein distance between distributions P (a) = {(w(a)

i , x
(a)
i ), i = 1, ...,ma}

and P (b) = {(w(b)
i , x

(b)
i ), i = 1, ...,mb} is solved by the following linear programming

(LP). For notation brevity, let c(x(a)
i , x

(b)
j ) = ‖x(a)

i − x
(b)
j ‖pp. Define index set

Ia = {1, ...,ma} and Ib likewise. We define
(
Wp(P (a), P (b))

)p
:=

min
{πi,j>0}

∑
i∈Ia,j∈Ib

πi,jc(x(a)
i , x

(b)
j ) ,

s.t. ∑ma
i=1 πi,j = w

(b)
j , ∀j ∈ Ib ,∑mb

j=1 πi,j = w
(a)
i , ∀i ∈ Ia .

(4.1)

We call {πi,j} the matching weights between support points x(a)
i and x(b)

j or the
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optimal coupling for P (a) and P (b). In D2-clustering, we use the L2 Wasserstein
distance. From now on, we will denote W2 simply by W .

Consider a set of discrete distributions {P (k), k = 1, ..., N̄}, where P (k) =
{(w(k)

i , x
(k)
i ), i = 1, ...,mk}. The goal of D2-clustering is to find a set of centroid

distributions {Q(i), i = 1, ..., K} such that the total within-cluster variation is
minimized:

min
{Q(i)}

N̄∑
k=1

min
i=1,...,K

W 2(Q(i), P (k)) .

Similarly as in K-means, D2-clustering alternates the optimization of the cen-
troids {Q(i)} and the assignment of each instance to the nearest centroid, the
iteration referred to as the outer loop (Algorithm 4.1). The major computational
challenge in the algorithm is to compute the optimal centroid for each cluster at each
iteration. This computation also marks the main difference between D2-clustering
and K-means in which the optimal centroid is in a simple closed form. The new
scalable algorithms we develop here aim primarily to expedite this optimization step.
For clarity of presentation, we now focus on this optimization problem and describe
the notation below. Suppose we have a set of discrete distributions {P (1), . . . , P (N)}.
N is the sample size for computing one Wasserstein barycenter. We want to find a
centroid P : {(w1, x1), . . . , (wm, xm)}, such that

min
P

1
N

N∑
k=1

W 2(P, P (k)) (4.2)

with respect to the weights and support points of P . This is the main question
we tackle in this paper. There is an implicit layer of optimization in (4.2)—the
computation of W 2(P, P (k)). The variables in optimization (4.2) thus include the
weights in the centroid {wi ∈ R+}, the support points {xi ∈ Rd}, and the optimal
coupling between P and P (k) for each k, denoted by {π(k)

i,j } (see Eq. (4.1)).
To solve (4.2), D2-clustering alternates the optimization of {wi} and {π(k)

i,j },
k = 1, ..., N , versus {xi}.

1. ∆k denotes a probability simplex of k dimensions.

2. 1 denotes a vector with all elements equal to one.

3. x = (x1, . . . , xm) ∈ Rd×m, w = (w1, . . . , wm) ∈ ∆m.
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4. x(k) = (x(k)
1 , . . . , x(k)

mk
) ∈ Rd×mk

, k = 1, ..., N .

5. w(k) = (w(k)
1 , . . . , w(k)

mk
) ∈ ∆mk

.

6. C(x,x(k)) = (‖xi − x(k)
j ‖2)i,j ∈ Rm×mk

.

7. X = (x(1), . . . ,x(N)) ∈ Rd×n, where n =
N∑
k=1

mk .

8. Π(k) = (π(k)
i,j ) ∈ R+

m×mk
, k = 1, ..., N .

9. Π = (Π(1), . . . ,Π(N)) ∈ R+
m×n .

10. Index set Ic = {1, ..., N}, Ik = {1, ...,mk}, for
k ∈ Ic, and I ′ = {1, ...,m}.

With w and Π fixed, the cost function (4.2) is quadratic in terms of x, and the
optimal x is solved by:

xi := 1
Nwi

N∑
k=1

mk∑
j=1

π
(k)
i,j x

(k)
j , i ∈ I ′ , (4.3)

Or, we can write it in matrix form: x := 1
N
XΠT diag(1./w). However, with fixed

x, updating w and Π is challenging. D2-clustering solves a large LP as follows:

min
Π∈R+

m×n,w∈∆m

N∑
k=1
〈C(x,x(k)),Π(k)〉 , (4.4)

s.t. 1 · (Π(k))T = w , 1 · Π(k) = w(k),∀k ∈ Ic ,

where the inner product 〈A,B〉 := tr(ABt).
By iteratively solving (4.3) and (4.4), referred to as the inner loop, the step

of updating the cluster centroid in Algorithm 4.1 is fulfilled [2, 19]. We present
the centroid update step in Algorithm 4.2. In summary, D2-clustering is given by
Algorithm 4.1 with Algorithm 4.2 embedded as one key step.

The major difficulty in solving (4.4) is that a standard LP solver typically
has a polynomial complexity in terms of the number of variables m+∑N

k=1mkm,
prohibiting its scalability to a large number of discrete distributions in one cluster.
When the cluster size is small or moderate, say dozens, it is shown that the
standard LP solver can be faster than a scalable algorithm [11]. However, when
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Algorithm 4.1 D2 Clustering [19]
1: procedure D2Clustering({P (k)}Mk=1, K)
2: Denote the label of each objects by l(k).
3: Initialize K random centroid {Q(i)}Ki=1.
4: repeat
5: for k = 1, . . . ,M do . Assignment Step
6: l(k) := argminiW (Q(i), P (k));
7: end for
8: for i = 1, . . . , K do . Update Step
9: Q(i) := argminQ

∑
l(k)=iW (Q,P (k)) (*)

10: end for
11: until the number of changes of {l(k)} meets some stopping criterion
12: return {l(k)}Mk=1 and {Q(i)}Ki=1.
13: end procedure

Algorithm 4.2 Centroid Update with Full-batch LP [2,19]
1: procedure Centroid({P (k)}Nk=1)
2: repeat
3: Updates {xi} from Eq. (4.3);
4: Updates {wi} from solving full-batch LP (4.4);
5: until P converges
6: return P
7: end procedure

the cluster size grows, the standard solver slows down quickly. This issue has been
demonstrated by multiple empirical studies [11,19,38].

Our key observation is that in the update of a centroid distribution, the variables
in w are much more important than are the matching weights in Π needed for
computing the Wasserstein distances. The parameter w is actually part of the
output centroid, while Π is not, albeit accounting for the vast majority of the
variables in (4.4). We also note that the solution (4.4) is not the end result, but
rather it is one round of centroid update in the outer loop. It is thus adequate
to have a sufficiently accurate solution to (4.4), motivating us to pursue scalable
methods such as ADMM, known to be fast for reaching the vicinity of the optimal
solution.
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4.3 Scalable Centroid Computation for D2-Clustering
We propose algorithms scalable with large-scale datasets, and compare their

performance in terms of speed and memory. They are (a) subgradient descent with
N mini-LP following similar ideas of [2] (included in Appendix 4.3.1), (b) standard
ADMM with N mini-QP, and (c) modified B-ADMM with closed forms in each
iteration of the inner loop. The bottleneck in the computation of D2-clustering
is the inner loop, detailed in Algorithm 4.2. The approaches we develop here all
aim for fast solutions for the inner loop, that is, to improve Algorithm 4.2. These
new methods can reduce the computation for centroid update to a comparable (or
even lower) level as the label assignment step, usually negligible in the original
D2-clustering. As a result, we also take measures to expedite the labeling step,
with details provided in Section 4.3.4.

4.3.1 Subgradient Descent Method

We describe a subgradient descent approach in this section for the purpose of
experimental comparison.

Eq. (4.4) can be casted as multi-level optimization by treating w as policies/-
parameters and Π as variables. Express W 2(P, P (k)), the squared distance between
P and P (k), as a function of w denoted by W̃ (w)(k). W̃ (w)(k) is the solution to
a designed optimization, but has no closed form. Let W̃ (w) = 1

N

∑N
k=1 W̃ (w)(k),

where N is the number of instances in the cluster. Note that Eq. (4.4) minimizes
W̃ (w) up to a constant multiplier. The minimization of W̃ with respect to w

is thus a bi-level optimization problem. In the special case when the designed
problem is LP and the parameters only appear on the right hand side (RHS) of the
constraints or are linear in the objective, the subgradient, specifically ∇W̃ (w)(k) in
our problem, can be solved via the same (dual) LP.

Again, we consider the routine that alternates the updates of {xi} and {πi,j}(k)

iteratively. With fixed {xi}, updating {πi,j}(k) involves solving N LP (4.1). With
LP (4.1) solved, we can write ∇W̃ (w)(k) in closed form, which is given by the set

The work presented in this section has been published in the form of a research paper:
Jianbo Ye, Panruo Wu, James Z. Wang and Jia Li, “Fast Discrete Distribution Clustering Using
Wasserstein Barcenter with Sparse Support,” IEEE Transactions on Signal Processing (TSP) ,
Vol 65, Issue 9, pp 2317–2332, 2017.

49



of dual variables {λ(k)
i }mi=1 corresponding to

{∑mk
j=1 πi,j = wi, i = 1, ...,m

}
. Because

{wi} must reside in the facets defined by ∆m, the projected subgradient ∇W̃ (w)(k)

is given by

∇W̃ (w)(k) = (λ(k)
1 , . . . , λ(k)

m )−
(

m∑
i=1

λ
(k)
i

)
(1, . . . , 1) . (4.5)

In the standard method of gradient descent, a line search is conducted in each
iteration to determine the step-size for a strictly descending update. Line search
however is computationally intensive for our problem because Eq. (4.5) requires
solving a LP and we need Eq. (4.5) sweeping over k = 1, ..., N . In machine learning
algorithms, one practice to avoid expensive line search is by using a pre-determined
step-size, which is allowed to vary across iterations. We adopt this approach here.

One issue resulting from a pre-determined step-size is that the updated weight
vector w may have negative components. We overcome this numerical instability
by the technique of re-parametrization. Let

wi(s) := exp(si)∑ exp(si)
, i = 1, ...,m . (4.6)

We then compute the partial subgradient with respect to si instead of wi, and
update wi by updating si. Furthermore exp(si) are re-scaled in each iteration such
that ∑m

i=1 si = 0.
The step-size α(w) is chosen by

σ(w) := min
(

α

‖∇sW̃ (w(s))‖
, ζ

)
. (4.7)

The two hyper-parameters α and ζ trade off the convergence speed and the guar-
anteed decrease of the objective. Another hyper-parameter is τ which indicates
the ratio between the update frequency of weights {wi} and that of support points
{xi}. In our experiments, we alternate one round of update for both {wi} and {xi}.
We summarize the subgradient descent approach in Algorithm 4.3. If the support
points {xi} are fixed, the centroid optimization is a linear programming in terms
of {wi}. The subgradient descent method converges under mild conditions on the
smoothness of the solution and small or adaptive step-sizes. In Algorithm 4.3, the
support points are also updated, and the problem becomes non-convex.
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Algorithm 4.3 Centroid Update with Subgradient Descent
1: procedure Centroid({P (k)}Nk=1, P ) . with initial guess
2: repeat
3: Updates {xi} from Eq.(4.3) Every τ iterations;
4: for k = 1, . . . , N do
5: Obtain Π(k) and Λ(k) from LP: W (P, P (k))
6: end for
7: ∇W̃ (w) := 1

N

∑N
k=1∇W̃ (w)(k); . See Eq.(4.5)

8: si := si − σ(w)∇W̃ (w) · ∂w

∂si
. See Eq. (4.7)

9: si := si −
∑m
j=1 sj, i = 1, . . .m; . rescaling step

10: wi := exp(si)∑ exp(si)
, i = 1, . . .m; . sum-to-one

11: until P converges
12: return P
13: end procedure

4.3.2 Alternating Direction Method of Multipliers

ADMM typically solves a problem with two sets of variables (in our case, they are Π
and w), which are only coupled in constraints, while the objective function is separa-
ble across this splitting of the two sets (in our case, w is not present in the objective
function) [44]. Because problem (4.4) has multiple sets of constraints including both
equalities and inequalities, it is not a typical scenario to apply ADMM. We propose
to relax all equality constraints ∑mk

l=1 π
(k)
i,l = wi, ∀k ∈ Ic, i ∈ I ′ in (4.4) to their

corresponding augmented Lagrangians and use the other constraints to determine a
convex set for the parameters being optimized. Let Λ = (λi,k), i ∈ I ′, k ∈ Ic. Let
ρ be a parameter to balance the objective function and the augmented Lagrangians.
Define ∆Π =

{
(π(k)

i,j ) : ∑m
i=1 π

(k)
i,j = w

(k)
j , π

(k)
i,j > 0, k ∈ Ic, i ∈ I ′, j ∈ Ik

}
. Recall that

∆m = {(w1, . . . , wm)|∑m
i=1wi = 1, wi > 0}. As in the method of multipliers, we

form the scaled augmented Lagrangian Lρ(Π,w,Λ) as follows

Lρ(Π,w,Λ) =
N∑
k=1
〈C(x,x(k)),Π(k)〉+ ρ

∑
i∈I′
k∈Ic

λi,k

mk∑
j=1

π
(k)
i,j − wi

+ ρ

2
∑
i∈I′
k∈Ic

mk∑
j=1

π
(k)
i,j − wi

2

. (4.8)
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Problem (4.4) can be solved using ADMM iteratively as follows.

Πn+1 := argmin
Π∈∆Π

Lρ(Π,wn,Λn) , (4.9)

wn+1 := argmin
w∈∆m

Lρ(Πn+1,w,Λn) , (4.10)

λn+1
i,k := λni,k +

mk∑
j=1

π
(k),n+1
i,j − wn+1

i , i ∈ I ′, k ∈ Ic . (4.11)

Based on (4.9), Π can be updated by updating Π(k), k = 1, ..., N separately.
Comparing with the full batch LP in (4.4) which solves all Π(k), k = 1, ..., N ,
together, ADMM solves instead N disjoint constrained quadratic programming
(QP). This step is the key for achieving computational complexity linear in N , the
main motivation for employing ADMM. Specifically, we solve (4.4) by solving (4.12)
below for each k = 1, ..., N :

min
π

(k)
i,j >0 〈C(x,x(k)),Π(k)〉+ ρ

2
∑m
i=1

(∑mk
j=1 π

(k)
i,j − wni + λni,k

)2

s.t. 1 · Π(k) = w(k), k ∈ Ic.
(4.12)

Since we need to solve small-size problem (4.12) in multiple rounds, we prefer active
set method with warm start. Define w̃(k),n+1

i := ∑mk
j=1 π

(k),n+1
i,j + λni,k for i = 1, ...,m,

k = 1, ..., N . We can rewrite step (4.10) as

min
w∈∆m

m∑
i=1

N∑
k=1

(w̃(k),n+1
i − wi)2 . (4.13)

We summarize the computation of the centroid distribution P for distributions
P (k), k = 1, ..., N , in Algorithm 4.4. There are two hyper-parameters to choose: ρ
and the number of iterations Tadmm. We empirically select ρ proportional to the
averaged transportation costs:

ρ = ρ0

Nnm

N∑
k=1

∑
i∈I′

∑
j∈Ik

c(xi, x(k)
j ) . (4.14)

Let us compare the computational efficiency of ADMM and the subgradient
descent method. In gradient descent based approaches, it is costly to choose an
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Algorithm 4.4 Centroid Update with ADMM [11]
1: procedure Centroid({P (k)}Nk=1, P , Π)
2: Initialize Λ0 = 0 and Π0 := Π.
3: repeat
4: Updates {xi} from Eq.(4.3);
5: Reset dual coordinates Λ to zero;
6: for iter = 1, . . . , Tadmm do
7: for k = 1, . . . , N do
8: Update {πi,j}(k) based on QP Eq.(4.12);
9: end for
10: Update {wi} based on QP Eq.(4.13);
11: Update Λ based on Eq. (4.11);
12: end for
13: until P converges
14: return P
15: end procedure

effective step-size along the descending direction because at each search point,
we need to solve N LP — an issue also discussed in [21]. ADMM solves N QP
sub-problems instead of LP. The amount of computation in each sub-problem of
ADMM is thus usually higher and grows faster with the number of support points
in P (k)’s. Whether the increased complexity at each iteration of ADMM is paid
off by a better convergence rate (i.e., a smaller number of iterations) is unclear.
The computational limitation of ADMM caused by QP motivates us to explore
B-ADMM that avoids QP in each iteration.

4.3.3 Bregman ADMM

Bregman ADMM (B-ADMM) replaces the quadratic augmented Lagrangians by
the Bregman divergence when updating the split variables [46]. Similar ideas trace
back at least to the early 1990s [47, 48]. We adapt the design in [28,31] for solving
the OT problem with a large set of support points. Consider two sets of variables
Π(k,1) = (π(k,1)

i,j ), i ∈ I ′, j ∈ Ik, and Π(k,2) = (π(k,2)
i,j ), i ∈ I ′, j ∈ Ik, for k = 1, ..., N

under the following constraints. Let

∆k,1 :=
{
π

(k,1)
i,j > 0 :

m∑
i=1

π
(k,1)
i,j = w

(k)
j , j ∈ Ik

}
, (4.15)

53



∆k,2(w) :=

π(k,2)
i,j > 0 :

mk∑
j=1

π
(k,2)
i,j = wi, i ∈ I ′

 , (4.16)

then Π(k,1) ∈ ∆k,1 and Π(k,2) ∈ ∆k,2(w). We introduce some extra notations:

1. Π̄(1) = {Π(1,1),Π(2,1), . . . ,Π(N,1)},

2. Π̄(2) = {Π(1,2),Π(2,2), . . . ,Π(N,2)},

3. Π̄ = {Π̄(1), Π̄(2)},

4. Λ = {Λ(1), . . . ,Λ(N)}, where Λ(k) = (λ(k)
i,j ), i ∈ I ′, j ∈ Ik, is a m×mk matrix.

B-ADMM solves (4.4) by treating the augmented Lagrangians conceptually as
a designed divergence between Π(k,1) and Π(k,2), adapting to the updated variables.
It restructures the original problem (4.4) as

min
Π̄,w

N∑
k=1
〈C(x,x(k)),Π(k,1)〉 , (4.17)

s.t. w ∈ ∆m ,

Π(k,1) ∈ ∆k,1, Π(k,2) ∈ ∆k,2(w), k = 1, . . . , N ,

Π(k,1) = Π(k,2), k = 1, . . . , N .

Denote the dual variables Λ(k) = (λ(k)
i,j ), i ∈ I ′, j ∈ Ik, for k = 1, ..., N . Use

KL(·, ·) to denote the Kullback–Leibler divergence between two distributions. The
B-ADMM algorithm adds the augmented Lagrangians for the last set of constraints
in its updates, yielding the following equations.

Π̄(1),n+1 := argmin
{Π(k,1)∈∆k,1}

N∑
k=1

〈C(x,x(k)),Π(k,1)〉+〈Λ(k),n,Π(k,1)〉+ρKL(Π(k,1),Π(k,2),n)
,

(4.18)

Π̄(2),n+1,wn+1 := argmin
{Π(k,2)∈∆k,1(w)}

w∈∆m

N∑
k=1

− 〈Λ(k),n,Π(k,2)〉+ ρKL(Π(k,2),Π(k,1),n+1)
,(4.19)

Λn+1 := Λn + ρ(Π̄(1),n+1 − Π̄(2),n+1). (4.20)

We note that if w is fixed, (4.18) and (4.19) can be split by index k = 1, ..., N , and
have closed form solutions for each k. Let eps be the floating-point tolerance (e.g.
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10−16). For any i ∈ I ′, j ∈ Ik,

π̃
(k,2),n
i,j := π

(k,2),n
i,j exp

c
(
xi, x

(k)
j

)
+λ(k),n

i,j

−ρ

+eps , (4.21)

π
(k,1),n+1
i,j :=

π̃
(k,2),n
i,j∑m

l=1π̃
(k,2),n
l,j

· w(k)
j , (4.22)

π̃
(k,1),n+1
i,j := π

(k,1),n+1
i,j exp

[
1
ρ
λ

(k),n
i,j

]
+eps , (4.23)

π
(k,2),n+1
i,j :=

π̃
(k,1),n+1
i,j∑mk

l=1π̃
(k,1),n+1
i,l

· wi . (4.24)

Because we need to update w in each iteration, it is not easy to solve (4.19). We
consider decomposing (4.19) into two stages. Observe that the minimum value of
(4.19) under a given w is

min
w∈∆m

N∑
k=1

m∑
i=1

wi

[
log(wi)− log

(∑mk

j=1 π̃
(k,1),n+1
i,j

)]
. (4.25)

The above term (a.k.a. the consensus operator) is minimized by

wn+1
i ∝

 N∏
k=1

mk∑
j=1

π̃
(k,1),n+1
i,j

1/N

,
m∑
i=1

wn+1
i = 1 . (4.26)

However, the above equation is a geometric mean, which is numerically unstable
when ∑mk

j=1 π̃
(k,1),n+1
i,j → 0+ for some combination of i and k. Here, we employ a

different technique. Let

w̃
(k,1),n+1
i ∝

mk∑
j=1

π̃
(k,1),n+1
i,j , s.t.

m∑
i=1

w̃
(k,1),n+1
i = 1.

Let the distribution w̃(k),n+1 = (w̃(k,1),n+1
i )i=1,...,m. Then Eq. (4.25) is equiva-

lent to minw∈∆m

∑N
k=1 KL(w, w̃(k),n+1). Essentially, a consensus w is sought to

minimize the sum of KL divergence. In the same spirit, we propose to find
a consensus by changing the order of w and w̃(k),n+1 in the KL divergence:
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minw∈∆m

N∑
k=1

KL(w̃(k),n+1,w) =

min
w∈∆m

N∑
k=1

m∑
i=1

w̃
(k,1),n+1
i (log(w̃(k,1),n+1

i )− log(wi)) , (4.27)

which again has a closed form solution:

(R1) : wn+1
i ∝ 1

N

N∑
k=1

w̃
(k,1),n+1
i ,

m∑
i=1

wn+1
i = 1 . (4.28)

The solution of Eq. (4.27) overcomes the numerical instability. We will call this
heuristic update rule as (R1), which has been employed in the Bregman clustering
method [37]. In addition, a slightly different version of update rule can be

(R2) :
(
wn+1
i

)1/2
∝ 1
N

N∑
k=1

(
w̃

(k,1),n+1
i

)1/2
,

m∑
i=1

wn+1
i = 1 . (4.29)

In Section 4.4, we conduct experiments for testing both (R1) and (R2). We have
tried other update rules, such as Fisher-Rao Riemannian center [49], and found
that the experimental results do not differ much in terms of the converged objective
function. It is worth mentioning that neither (R1) nor (R2) ensures the convergence
to a (local) minimum.

We summarize the B-ADMM approach in Algorithm 4.5. The implementation
involves one hyper-parameters ρ (by default, τ = 10). In our implementation, we
choose ρ relatively according to Eq. (4.14). To the best of our knowledge, the
convergence of B-ADMM has not been proved for our formulation (even under fixed
support points x) although this topic has been pursued in recent literature [31].
In the general case of solving Eq. (4.2), the optimization of the cluster centroid
is non-convex because the support points are updated after B-ADMM is applied
to optimize the weights. In Section 4.3.7, we empirically test the convergence of
the centroid optimization algorithm based on B-ADMM. We found that B-ADMM
usually converges quickly to a moderate accuracy, making it preferable for D2-
clustering. In our implementation, we use a fixed number of B-ADMM iterations
(by default, 100) across multiple assignment-update rounds in D2-clustering.
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Algorithm 4.5 Centroid Update with B-ADMM
1: procedure Centroid({P (k)}Nk=1, P , Π).
2: Λ := 0; Π̄(2),0 := Π.
3: repeat
4: Update x from Eq.(4.3) per τ loops;
5: for k = 1, . . . , N do
6: Update Π(k,1) based on Eq.(4.21) (4.22);
7: Update {π̃(k,1)

i,j } based on Eq.(4.23);
8: end for
9: Update w based on Eq.(4.28) or Eq.(4.29);
10: for k = 1, . . . , N do
11: Update Π(k,2) based on Eq.(4.24);
12: Λ(k) := Λ(k) + ρ(Π(k,1) − Π(k,2));
13: end for
14: until P converges
15: return P
16: end procedure

4.3.4 Algorithm Initialization and Implementation

In this section, we explain some specifics in the implementation of the algorithms,
such as initialization, warm-start in optimization, measures for further speed-up,
and the method for parallelization.

The number of support vectors in the centroid distribution, denoted by m, is set
to the average number of support vectors in the distributions in the corresponding
cluster. To initialize a centroid, we select randomly a distribution with at least m
support vectors from the cluster. If the number of support vectors in the distribution
is larger than m, we will merge recursively a pair of support vectors according to
an optimal criterion until the support size reaches m, similar to the process used in
linkage clustering. Consider a chosen distribution P = {(w1, x1), ..., (wm, xm)}. We
merge xi and xj to x̄ = (wixi +wjxj)/w̄ , where w̄ = wi +wj is the new weight for
x̄, if (i, j) solves

min
i,j

wiwj‖xi − xj‖2/(wi + wj) . (4.30)

Let the new distribution after one merge be P ′. It is sensible to minimize the
Wasserstein distance between P and P ′ to decide which support vectors to merge.
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We note that
W 2(P, P ′) ≤ wi‖xi − x̄‖2 + wi‖xj − x̄‖2 .

This upper bound is obtained by the transport mapping xi and xj exclusively to x̄
and the other support vectors to themselves. To simplify computation, we instead
minimize the upper bound, which is achieved by the x̄ given above and by the pair
(i, j) specified in Eq. (4.30).

The B-ADMM method requires an initialization for Π(k,2), where k is the
index for every cluster member, before starting the inner loops (see Algorithm
4.5). We use a warm-start for Π(k,2). Specifically, for the members whose cluster
labels are unchanged after the most recent label assignment, Π(k,2) is initialized
by its value solved (and cached) in the previous round (with respect to the outer
loop) . Otherwise, we initialize Π(k,2) = (π(k,2)

i,j ), i = 1, ...,m, j = 1, ...,mk by
π

(k,2),0
i,j := wiw

(k)
j . This scheme of initialization is also applied in the first round

of iteration when class labels are assigned for the first time and there exists no
previous solution for this parameter.

At the relabeling step (i.e., to assign data points to centroids after centroids are
updated), we need to compute N̄K Wasserstein distances, where N̄ is the data size
and K is the number of centroids. This part of the computation, usually negligible
in the original D2-clustering, is a sizable cost in our new algorithms. To further
boost the scalability, we employ the technique of [50] to skip unnecessary distance
calculation by exploiting the triangle inequality of a metric.

In our implementation, we use a fixed number of iterations εi for all inner loops
for simplicity. Obtaining highly accurate result for the inner loop is not crucial
because the partition will be changed by the outer loop. For B-ADMM, we found
that setting εi to tens or a hundred suffices. For subgradient descent and ADMM,
an even smaller εi is sufficient, e.g., around or below ten. The number of iterations
of the outer loop εo is not fixed, but rather is adaptively determined when a certain
termination criterion is met.

With an efficient serial implementation, our algorithms can be deployed to
handle moderate scale data on a single PC. We also implemented their parallel
versions which are scalable to a large data size and a large number of clusters.
We use the commercial solver provided by Mosek,2 which is among the fastest

2https://www.mosek.com
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LP/QP solvers available. In particular, Mosek provides optimized simplex solver
for transportation problems that fits our needs well.

The algorithms we have developed here are all readily parallelizable by adopting
the Allreduce framework in MPI. In our implementation, we divide data evenly
into trunks and process each trunk at one processor. Each trunk of data stay at
the same processor during the whole program. We can parallelize the algorithms
simply by dividing the data because in the centroid update step, the computation
comprises mainly separate per data point optimization problems. The main com-
munication cost is on synchronizing the update for centroids by the inner loop. The
synchronization time with equally partitioned data is negligible.

We experimented with discrete distributions over a vector space endowed with
the Euclidean distance as well as over a symbolic set. In the second case, a symbol-
to-symbol distance matrix is provided. When applying D2-clustering to such data,
the step of updating the support vectors can be skipped since the set of symbols is
fixed. In some datasets, the support vectors in the distributions locate only on a
pre-given grid. We can save memory in the implementation by storing the indices
of the grid points rather than the direct vector values.

Although we assume each instance is a single distribution in all the previous
discussion, it is straightforward to generalize to the case when an instance is an
array of distributions (indeed that is the original setup of D2-clustering in [19]).
For instance, a protein sequence can be characterized by three histograms over
respectively amino acids, dipeptides, and tripeptides. This extension causes little
extra work in the algorithms. When updating the cluster centroids, the distributions
of different modalities can be processed separately, while in the update of cluster
labels, the sum of squared Wasserstein distances for all the distributions is used as
the combined distance.

4.3.5 Complexity and Performance Comparisons

Recall some notations: N̄ is the data size (total number of distributions to be
clustered); d is the dimension of the support vectors; K is the number of clusters;
and εi or εo is the number of iterations in the inner or outer loop. Let m̄ be the
average number of support vectors in each distribution in the training set and m be
the number of support vectors in each centroid distribution (m̄ = m in our setup).
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In our implementation, to reduce the time of dynamic memory allocation, we
retain the memory for the matching weights between the support vectors of each
distribution and its corresponding centroid. Hence, the memory allocation is of
order O(N̄m̄m) +O(dN̄m̄+ dKm).

For computational complexity, first consider the time for assigning cluster labels
in the outer loop. Without the acceleration yielded from the triangle inequality,
the complexity is O(εoN̄Kl(m̄m, d)), where l(m̄m, d) is the average time to solve
the Wasserstein distance between distributions on a d dimensional metric space.
Empirically, we found that by omitting unnecessary distance computation via the
triangle inequality, the complexity is reduced roughly to O(εo(N̄ +K2)l(m̄m, d)).
For the centroid update step, the time complexity of the serial version of the
ADMM method is O(εoεiN̄md)+O(Tadmm · εoεiN̄q(m̄m, d)), where q(m′m, d) is the
average time to solve QPs (Eq. (4.12)). The complexity of the serial B-ADMM is
O(εoεiN̄md/τ )+O(εoεiN̄m̄m). Note that in the serial algorithms, the complexity for
updating centroids does not depend on K, but only on data size N̄ . For the parallel
versions of the algorithms, the communication load per iteration in the inner loop is
O(TadmmKmd) for ADMM and O(Km(1 + d/τ)) for the B-ADMM.

Both analytical and empirical studies (Section 4.3.8) show that the ADMM
algorithm is significantly slower than the other two when the data size is large
due to the many constrained QP sub-problems required. Although the theoretical
properties of convergence are better understood for ADMM, our experiments show
that B-ADMM performs well consistently in terms of both convergence and the
quality of the clustering results.

Although the preference for B-ADMM is experimentally validated, given the lack
of strong theoretical results on its convergence, it is not clear-cut that B-ADMM can
always replace the alternatives. We were thus motivated to develop the subgradient
descent (in our supplement) and standard ADMM algorithms to serve at least as
yardsticks for comparison. We provide the following guidelines on the usage of the
algorithms.

• We recommend the modified B-ADMM as the default data processing pipeline
for its scalability, stability, and fast performance. Large memory is assumed
to be available under the default setting.

• It is known that ADMM type methods can approach the optimal solution
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quickly at the beginning when the current solution is far from the optimum
while the convergence slows down substantially when the solution is in the
proximity of the optimum. Because we always reset the Lagrangian multipliers
in B-ADMM at the beginning of every round of the inner loop and a fixed
number of iterations are performed within the loop, our scheme does not
pursue aggressively high accuracy for the resulting centroids at every round.
However, if the need arises for highly accurate centroids, we recommend the
subgradient descent method that takes as initialization the centroids first
obtained by B-ADMM.

4.3.6 Experimental Setup

We have conducted experiments to examine the convergence of the algorithms,
stability, computational/memory efficiency and scalability of the algorithms, and
quality of the clustering results on large data from several domains.

Table 4.1. Datasets in the experiments. N̄ : data size, d: dimension of the support
vectors ("symb" for symbolic data), m: number of support vectors in a centroid, K:
maximum number of clusters tested. An entry with the same value as in the previous
row is indicated by "-".

Data N̄ d m K

synthetic 2,560,000 ≥16 ≥32 256
image color 5,000 3 8 10

image texture - - - -
protein sequence 1-gram 10,742 symb. 20 10
protein sequence 3-gram - - 32 -

USPS digits 11,000 2 80 360
BBC news abstract 2,225 300 16 15
Wiki events abstract 1,983 400 16 100
20newsgroups GV 18,774 300 64 40
20newsgroups WV - 400 100 -

Table 4.1 lists the basic information about the datasets used in our experiments.
For the synthetic data, the support vectors are generated by sampling from a
multivariate normal distribution and then adding a heavy-tailed noise from the
student’s t-distribution. The probabilities on the support vectors are perturbed
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and normalized samples from Dirichlet distribution with symmetric prior. We
omit details due to lack of space. The synthetic data are only used to study
the scalability of the algorithms. The image color or texture data are created
from crawled general-purpose photographs. Local color or texture features around
each pixel in an image are clustered (i.e. quantized) to yield color or texture
distributions. The protein sequence data are histograms over the amino acids
(1-gram) and tripeptides (3-tuples, 3-gram) [38]. The USPS digit images are treated
as normalized histograms over the pixel locations covered by the digits, where the
support vector is the 2D coordinate of a pixel and the weight corresponds to pixel
intensity. For the 20newsgroups data, we use the recommended “bydate” MATLAB
version which includes 18,774 documents and 61,188 unique words. The two
datasets, “20 newsgroup GV” and “20newsgroup WV” are created by characterizing
the documents in different ways. The “BBC news abstract” and “Wiki events
abstract” datasets are truncated versions of two document collections [51,52]. These
two sets of short documents retain only the title and the first sentence of each
original post. The purpose of using these severely cut documents is to investigate a
more challenging setting for existing document or sentence analysis methods, where
semantically related sentences are less likely to share the exact same words. For
example, “NASA revealed its ambitions that humans can set foot on Mars” and
“US is planning to send American astronauts to Red Planet” describe the same
event. More details on the data are referred to Section 4.3.9.

4.3.7 Convergence and Stability

We empirically test the convergence and stability of the three approaches: modified
B-ADMM, ADMM, and subgradient descent method, based on their sequential
versions implemented in the C programming language. Four datasets are used in
the test: protein sequence 1-gram, 3-gram data, and the image color and texture
data. In summary, the experiments show that the modified B-ADMM method
has achieved the best numerical stability with respect to hyper-parameters while
keeping a comparable convergence rate as the subgradient descent method in terms
of CPU time. To conserve space, detailed results on the study of stability are
provided in Appendix B. Despite of its popularity in large-scale machine learning
problems, by lifting N̄ LPs to N̄ QPs, the ADMM approach is much slower on
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large datasets than the other two approaches are.
We examine the convergence property of the B-ADMM approach for computing

the centroid of a single cluster (the inner loop). In this experiment, a subset of image
color or texture data with size 2, 000 is used. For the two protein sequence datasets,
the whole sets are used. Fig. 4.1 and Fig. 4.2 show the convergence analysis results
on the four datasets. The vertical axis in the plots in Fig. 4.1 is the objective
function of B-ADMM, given in Eq. (4.18), but not the original objective function
of clustering in Eq. (4.2). The runtime is based on a single thread with 2.6 GHz
Intel Core i7. The plots reveal two characteristics about the B-ADMM approach:
1) The algorithm achieves consistent and comparable convergence rate under a
wide range of values for the hyper-parameter ρ0 ∈ {0.5, 1.0, 2.0, 4.0, 8.0, 16.0} and
is numerically stable; 2) The effect of the hyper-parameter on the decreasing ratio
of the dual and primal residuals follows similar patterns across the datasets.

It is technically subtle to compare the convergence and stability of the overall
AD2-clustering embedded with different algorithms for computing the centroid.
Because of the many iterations in the outer loop, the centroid computation algorithm
(solving the inner loop) may behave quite differently over the outer-loop rounds. For
instance, if an algorithm is highly sensitive to a hyper-parameter in optimization,
the hyper-parameter chosen based on earlier rounds may yield slow convergence
later or even cause the failure of convergence. Moreover, achieving high accuracy
for centroids in earlier rounds, usually demanding more inner-loop iterations, may
not necessarily result in faster decrease in the clustering objective function because
the cluster assignment step also matters.

In light of these issues, we employ a protocol described in Algorithm 4.6 to
decide the number of iterations in the inner loop. The protocol specifies that in each
iteration of the outer loop, the inner loop for updating centroids should complete
within ηTa/K amount of time, where Ta is the time used by the assignment step
and K is the number of clusters. As we have pointed out, the LP/QP solver in the
subgradient descent method or standard ADMM suffers from rapidly increasing
complexity when the number of support points per distribution increases. In
contrast, the effect on B-ADMM is much lower. In the experiment below, the
datasets contain distributions with relatively small support sizes (a setup favoring
the former two methods). A relatively tight time-allocation η = 2.0 is set. The
subgradient descent method finishes at most 2 iterations in the inner loop, while
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Figure 4.1. Convergence analysis of the B-ADMM method for computing a single cen-
troid based on four datasets: objective function of B-ADMM based centroid computation
with respect to CPU time.

B-ADMM on average finishes more than 60 iterations on the color and texture
data, and more than 20 iterations on the protein sequence 1-gram and 3-gram data.
The results by the ADMM method are omitted because this method cannot finish
a single iteration under this time allocation.

In Fig. 4.3, we compare the convergence performance of the overall clustering pro-
cess employing B-ADMM at ρ0 = 2.0 and the subgradient descent method with fine-
tuned values for the step-size parameter α ∈ {0.05, 0.1, 0.25, 0.5, 1.0, 2.0, 5.0, 10.0}.
The step-size is chosen as the value yielding the lowest clustering objective function
in the first round. In this experiment, the whole image color and texture data
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Figure 4.2. Convergence analysis of the B-ADMM method for computing a single
centroid based on four datasets: the trajectory of dual residual vs. primal residual (in
the negative log scale.

are used. In the plots, the clustering objective function (Eq. (4.2)) is shown with
respect to the CPU time. We observe a couple of advantages of the B-ADMM
method. First, with a fixed parameter ρ0, B-ADMM yields good convergence on
all the four datasets, while the subgradient descent method requires manually
tuning the step-size α in order to achieve comparable convergence speed. Second,
B-ADMM achieves consistently lower values for the objective function across time.
On the protein sequence 1-gram data, B-ADMM converges substantially faster
than the subgradient descent method with a fine-tuned step-size. Moreover, the
subgradient descent method is numerically less stable. Although the step-size is
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Algorithm 4.6 Time allocation based algorithmic profile protocol
1: procedure Profile({P (k)}Mk=1, Q, K, η).
2: Start profiling;
3: T = 0;
4: repeat
5: Ta = 0;
6: Assignment Step;
7: GetElaspedCPUTime(Ta, T );
8: GetAndDisplayPerplexity(T );
9: Update Step within CPU time allocation ηTa/K;
10: until T < Ttotal
11: return
12: end procedure

fine-tuned based on the performance at the beginning, on the image color data,
the objective function fluctuates noticeably in later rounds. Striking a balance
(assuming it exists) between stability and speed for the subgradient descent method
is a difficult dilemma.

4.3.8 Efficiency and Scalability

We now study the computational/memory efficiency and scalability of AD2-clustering
with the B-ADMM algorithm embedded for computing cluster centroids. We use
the synthetic data that allow easy control over data size and other parameters in
order to test their effects on the computational and memory load (i.e., workload)
of the algorithm. We study the scalability of our parallel implementation on a
cluster computer with distributed memory. Scalability here refers to the ability of
a parallel system to utilize an increasing number of processors.

AD2-clustering can be both CPU-bound and memory-bound. Based on the
observations from the above serial experiments, we conducted three sets of ex-
periments to test the scalability of AD2-clustering in a multi-core environment,
specifically, strong scaling efficiency, weak scaling efficiency with respect to N̄ or
m. The configuration ensures that each iteration finishes within one hour and the
memory of a typical computer cluster is sufficient.

Strong scaling efficiency (SSE) is about the speed-up gained from using more
and more processors when the problem is fixed in size. Ideally, the runtime on
parallel CPUs is the time on a single thread divided by the number of CPUs. In
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Figure 4.3. Convergence performance of B-ADMM and the subgradient descent method
for D2-clustering based on four datasets. The clustering objective function versus CPU
time is shown. Here, K = 10, and the time-allocation ratio η = 2.0.

Table 4.2. Scaling efficiency of AD2-clustering in parallel implementation.
# processors 32 64 128 256 512
SSE (%) 93.9 93.4 92.9 84.8 84.1

WSE on N̄ (%) 99 94.8 95.7 93.3 93.2
WSE on m (%) 96.6 89.4 83.5 79.0 -

practice, such a reduction in time cannot be fully achieved due to communication
between CPUs and time for synchronization. We thus measure SSE by the ratio
between the ideal and the actual amount of time. We chose a moderate size
problem that can fit in the memory of a single machine (50GB): N̄ = 250000,
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d = 16, m = 64, k = 16. Table 4.2 shows the SSE values with the number of
processors ranging from 32 to 512. The results show that AD2-clustering scales
well in SSE when the number of processors is up to hundreds.

Weak scaling efficiency (WSE) measures how stable the real computation time
can be when proportionally more processors are used as the size of the problem
grows. We compute WSE with respect to both N̄ and m. Let np be the number of
processors. For WSE on N̄ , we set N̄ = 5000 · np, d = 64, m = 64, and K = 64
on each processor. The per-node memory is roughly 1GB. For WSE on m, we set
N̄ = 10000, K = 64, d = 64, and m = 32 · √np. Table 4.2 shows the values of
WSE on N̄ and m. We can see that AD2-clustering also has good weak scalability,
making it suitable for handling large scale data. In summary, our proposed method
can be effectively accelerated with an increasing number of CPUs.

4.3.9 Quality of Clustering Results

Handwritten Digits: We conducted two experiments to evaluate the results of
AD2-clustering on USPS data, which contain 1100× 10 instances (1, 100 per class).
First, we cluster the images at K = 30, 60, 120, 240 and report in Fig. 4.4(a) the
homogeneity versus completeness [53] of the obtained clustering results. We set
K to large values because clustering performed on such image data is often for
the purpose of quantization where the number of clusters is much larger than the
number of classes. In this case, homogeneity and completeness are more meaningful
measures than the others used in the literature (several of which will be used
later for the next two datasets). Roughly speaking, completeness measures how
likely members of the same true class fall into the same cluster, while homogeneity
measures how likely members of the same cluster belong to the same true class. By
construction, the two measures have to be traded off. We compared our method
with Kmeans++ [54]. For this dataset, we found that Kmeans++, with more careful
initialization, yields better results than the standard K-means. Their difference on
the other datasets is negligible. Fig. 4.4(a) shows that AD2-clustering obviously
outperforms Kmeans++ cross K’s.

Secondly, we tested AD2-clustering for quantization with the existence of noise.
In this experiment, we corrupted each sample by "blankout"—randomly deleting
a percentage of pixels occupied by the digit (setting to zero the weights of the
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corresponding bins), as is done in [55]. Then each class is randomly split into
800/300 training and test samples. Clustering is performed on the 8000 training
samples; and a class label is assigned to each cluster by majority vote. In the testing
phase, classifying an instance entails locating its nearest centroid and then assigning
the class label of the corresponding cluster. The test classification error rates with
respect to K and the blankout rate are plotted in Fig. 4.4(b). The comparison with
Kmeans++ demonstrates that AD2-clustering performs consistently better, and
the margin is remarkable when the number of clusters is large and the blankout
rate is high.
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Figure 4.4. Comparisons between Kmeans++ and AD2-clustering on USPS dataset. We
empirically set the number of support vectors in the centroids m = 80(1−blankout_rate).

Documents as Bags of Word-vectors: The idea of treating each document
as a bag of vectors has been explored in previous work where a nearest neighbor
classifier is constructed using Wasserstein distance [5, 56]. One advantage of the
Wasserstein distance is to account for the many-to-many mapping between two
sets of words. However, clustering based on Wasserstein distance, especially the
use of Wasserstein barycenter, has not been explored in the literature of document
analysis. We have designed two kinds of experiments using different document data
to assess the power of AD2-clustering.

To demonstrate the robustness of D2-clustering across different word embedding
spaces, we use 20newsgroups processed based on two pre-trained word embedding
models. We pre-processed the dataset by two steps: remove stop words and
remove other words that do not belong to a pre-selected background vocabulary. In
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GV tf-idf LDA LDA Avg. AD2 AD2 AD2
Vocab. naïve vector
K 40 20 20 30 20 30 40

AMI 0.447 0.326 0.329 0.360 0.418 0.461 0.446
ARI 0.151 0.160 0.187 0.198 0.260 0.281 0.284
hours 5.8 7.5 10.4
# iter. 44 45 61
WV tf-idf LDA LDA Avg. AD2 AD2 AD2

Vocab. naïve vector
K 20 25 20 20 20 30 40

AMI 0.432 0.336 0.345 0.398 0.476 0.477 0.455
ARI 0.146 0.164 0.183 0.212 0.289 0.274 0.278
hours 10.0 11.3 17.1
# iter. 28 29 36

Table 4.3. Compare clustering results of AD2-clustering and several baseline methods
using two versions of Bag-of-Words representation for the 20newsgroups data. Top
panel: the data are extracted using the GV vocabulary; bottom panel: WV vocabulary.
AD2-clustering is performed once on 16 cores with less than 5GB memory. Run-times of
AD2-clustering are reported (along with the total number of iterations).

particular, two background vocabularies are tested: English Gigaword-5 (denoted
by GV) [57] and a Wikipedia dump with minimum word count of 10 (denoted by
WV) [58]. Omitting details due to lack of space, we validated that under the GV
or WV vocabulary information relevant to the class identities of the documents is
almost intact. The words in a document are then mapped to a vector space. For
GV vocabulary, the Glove mapping to a vector space of dimension 300 is used [57],
while for WV, the Skip-gram model is used to train a mapping space of dimension
400 [58]. The frequencies on the words are adjusted by the popular scheme of
tf-idf. The number of different words in a document is bounded by m (its value in
Table 4.1). If a document has more than m different words, some words are merged
into hyper-words recursively until reaching m, in the same manner as the greedy
merging scheme used in centroid initialization described in Section 4.3.4.

We evaluate the clustering performance by two widely used metrics: AMI [6]
and ARI [59,60]. The baseline methods for comparison include K-means on the raw
tf-idf word frequencies, K-means on the LDA topic proportional vectors [61] (the
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number of LDA topics is chosen from {40, 60, 80, 100}), K-means on the average
word vectors, and the naïve way of treating the 20 LDA topics as clusters. For each
baseline method, we tested the number of clusters K ∈ {10, 15, 20, 25, 30, 40} and
report only the best performance for the baseline methods in Table 4.3, while for
AD2-clustering, K = 20, 30, 40 are reported. Under any given setup of a baseline
method, multiple runs were conducted with different initialization and the median
value of the results was taken. The experimental results show that AD2-clustering
achieves the best performance on the two datasets according to both AMI and
ARI. Comparing with most baseline methods, the boost in performance by AD2-
clustering is substantial. Furthermore, we also vary m in the experimental setup
of AD2-clustering. At m = 1, our method is exactly equivalent to K-means of the
distribution means. We increased m empirically to see how the results improve
with a larger m. We did not observe any further performance improvement for
m ≥ 64.

We note that the high competitiveness of AD2-clustering can be credited to
(1) a reasonable word embedding model and (2) the bag-of-words model. When
the occurrence of words is sparse across documents, the semantic relatedness
between different words and their compositions in a document plays a critical role
in measuring the document similarity.

In our next experiment, we study AD2-clustering for short documents, a challeng-
ing setting for almost all existing methods based on the bag-of-words representation.
The results show that the performance boost of AD2-clustering is also substantial.
We use two datasets, one is called “BBC news abstract” and the other “Wiki events
abstract”. Each document is represented by only the title and the first sentence
from a news article or an event description. Their word embedding models are
same as the one used by the “WV” version in our previous experiment. The “BBC
news” dataset contains five news categories, and “Wiki events” dataset contains
54 events. Clustering such short documents is more challenging due to the sparse
nature of word occurrences. As shown by Table 4.4, in terms of generating clusters
coherent with the labeled categories or events, methods which leverage either the
bag-of-words model or the word embedding model (but not both) are outperformed
by AD2-clustering which exploits both. In addition, AD2-clustering is fast for those
sparse support discrete distribution data. It takes only several minutes to finish
the clustering in an 8-core machine.
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Tf-idf LDA NMF Avg. vector AD2
BBC news abstract 0.376 0.151 0.537 0.753 0.759
Wiki events abstract 0.448 0.280 0.395 0.312 0.545

Table 4.4. Best AMIs achieved by different methods on the two short document datasets.
NMF denotes for the non-negative matrix factorization method.

To quantify the gain from employing an effective word embedding model, we
also applied AD2-clustering to a random word embedding model, where a vector
sampled from a multivariate Gaussian with 300 dimensions is used to represent a
word in vocabulary. We found that the results are much worse than those reported
in Table 4.4 for AD2-clustering. The best AMI for “BBC news abstract” is 0.187
and the best AMI for “Wiki events abstract” is 0.369, comparing respectively with
0.759 and 0.545 obtained from a carefully trained word embedding model.

4.4 Discussions
Both the B-ADMM and IBP can be rephrased into two-step iterative algorithms via
mirror maps (in a similar way of mirror prox [62] or mirror descent [63]). One step
is the free-space move in the dual space, and the other is the Bregman projection
(as used in IPFP) in the primal space. Let Φ(·) be the entropy function, the mirror
map used by IBP is Φ(Π), while the mirror map of B-ADMM is

Φ(Π(1),Π(2),Λ) = Φ(Π(1)) + Φ(Π(2)) + ‖Λ‖
2

ρ2 ,

where Λ is the dual coordinate derived from relaxing constraints Π(1) = Π(2) to a
saddle point reformulation. IBP alternates the move −

[
C

ε

]
in the dual space and

projection in ∆1 or ∆2 of the primal space. In comparison, B-ADMM alternates
the move

−



C + Λ
ρ

+∇Φ(Π(1))−∇Φ(Π(2))

−Λ
ρ

+∇Φ(Π(2))−∇Φ(Π(1))

ρ(Π(1) − Π(2))

 ,
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and the projection in ∆1 ×∆2 × Rm1×m2 .3 The convergence of B-ADMM is not
evident from the conventional optimization literature [64] because the move is not
monotonic (It is still monotonic for standard ADMM). We conduct two pilot studies
to compare B-ADMM and IBP in terms of convergence behavior and the quality
of the Wasserstein barycenters with a sparse finite support set, where quality is
measured by the objective function achieved.

Although the second pilot study shows certain advantages of B-ADMM, we
clarify that the study is not intended to demonstrate which algorithm is better
in the general context of the OT problem. In fact, for the OT problem alone,
IBP is more solid in theory than B-ADMM in two aspects. First, IBP has linear
convergence, while B-ADMM only has a sub-linear rate [31]. Second, IBP yields an
OT solution more accurately satisfying the coupling constraints than B-ADMM can
offer with the same computational time. In the Wasserstein barycenter problem
we tackle here, either algorithm must be embedded into an outer loop, which calls
for practical considerations other than solving a stand-alone OT problem. We will
elaborate on these points below.

Benamou et al. [21], in their Figure 1, show how their algorithm progressively
shifts mass away from the diagonal over the iterations. We adopt the same
study here and visualize in Fig. 3.1 how the mass transport between two 1D
distributions evolves over iterations. As a qualitative study, we observe that the
entropy regularization term in IBP introduces clearly smoothing effect on the final
solutions. It has been pointed out in the literature that the smoothing effect of
entropy regularization diminishes as parameter ε decreases. In our study, we found
the smoothing effect is also affected by the support size of a distribution. A smooth
distribution with large support tends to have higher entropy, thus a relatively
smaller ε is needed to achieve similar results. Fig. 3.1 shows that at ε = 0.1/N ,
the mass transport of IBP at 5,000 iterations is close to the unregularized solution
albeit with noticeable difference. Setting ε even smaller (say 0.04/N) introduces
double-precision overflow. As suggested by one of the reviewers, this numerical
difficulty can be addressed by thresholding entries that are too small. We applied
the reviewer’s suggested IBP code with this technique implemented and obtained an
incorrect coupling result with artifacts unexplainable by smoothing, e.g., a non-zero
region separated from the correct non-zero region. Yet more recently, we learned

3The update is done in the Gauss-Seidel type, not in the usual Jacobi type.
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from the reviewer that active research on the thresholding technique is currently
underway with new manuscripts emerging while we approached the final revision
of this paper. In particular, log domain scaling or more sophisticated schemes
have been proposed to stabilize the low ε case for Sinkhorn algorithm [65,66]. At
extra computational costs, these new methods produce sharper coupling results
than the standard IBP does. Investigating the effectiveness of those algorithms
for the Wasserstein barycenter problem is an interesting future work. In contrast,
the output of mass transport by B-ADMM (ρ0 = 2, the default setting) at 5,000
iteration is nearly indiscernible from the unregularized solution by LP. This example
suggests that if the smoothing effect on the final coupling is to be avoided, B-ADMM
may be preferred over IBP with ε→ 0, albeit at a cost of increased computation
time. With our implementation of B-ADMM and the IBP code provided by the
reviewer, we found that IBP is 10 to 15 times faster per iteration.

Because B-ADMM does not require ρ0→ 0, no numerical difficulty has been
encountered in practice. In fact, the convergence speed of B-ADMM is proven to be
independent with ρ0 [31]. As for the Wasserstein barycenter problem, the minimal
required tuning makes embedding B-ADMM in an outer loop easy. Putting the
IBP in the outer loop reduces its speed advantage. In existing machine learning
practice as well as with our algorithm here, pre-converged solutions of IBP or
B-ADMM are used, making the use of a very small ε in IBP unnecessary. In our
algorithm, however, B-ADMM per iteration slows the process as does updating
barycenter support points in high dimensions. Thus, the computational gain from
replacing B-ADMM by IBP is clipped by the notable proportion of time required
to update the support points. In addition, although the coupling weights solved
by B-ADMM do not satisfy the constraints as well as those by IBP do, they are
auxiliary variables, while the barycenters are primary. In summary, the edge of
either IBP or B-ADMM over the other subsides when they are embedded in our
algorithm. In order to quantitatively compare the methods by measures most
pertinent to the users, we examine the objective function and computation time in
the second pilot study below.

For the second pilot study, we generated a set of 1,000 discrete distributions,
each with a sparse finite support set obtained by clustering pixel colors of images [19]
(d = 3). The average number of support points is around 6. Starting from the same
initial estimate, we calculate the approximate Wasserstein barycenter by different
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Solved Wasserstein barycenter with a pre-fixed support
(m = 6)/(m = 60)

method iterations seconds obj.
full LP NA - 834.1 / 709.6
Our approach (R1) 500 / 800 0.78 / 13.0 838.6 / 713.4
Our approach (R2) 400 / 700 0.58 / 11.8 835.5 / 712.3
IBP[19] ε0 = 0.2 150 / 40 0.06 / 0.11 978.3 / 1073.5
IBP ε0 = 0.1 620 / 80 0.16 / 0.23 965.9 / 1051.6
IBP ε0 = 0.02 6,640 / 760 1.50 / 1.49 957.1 / 1039.4
IBP ε0 = 0.01 17,420 / 9,460 4.17 / 17.0 960.2 / 2343.8∗

IBP ε0 = 0.005 36,270 / 5,110 8.88 / 9.83 1345.1∗ / 7112.2∗

Solved Wasserstein barycenter with an optimized support
(m = 6)/(m = 60)

method iterations seconds obj.
full LP 20 - 717.8 / 692.3
Our approach (R1) 2,000 2.91 / 31.1 723.3 / 692.6
Our approach (R2) 2,000 3.02 / 32.2 722.7 / 692.5
IBP ε0 = 0.2 190 / 60 0.06 / 0.19 733.7 / 703.5
IBP ε0 = 0.1 730 / 130 0.22 / 0.31 734.4 / 699.5
IBP ε0 = 0.02 11,860 / 1,590 2.67 / 2.73 734.9 / 705.5
IBP ε0 = 0.01 33,940 / 5,130 7.71 / 9.01 734.9 / 708.3
IBP ε0 = 0.005 69,860 / 16,910 16.5 / 30.87 736.1 / 708.6

Table 4.5. Comparing the solutions of the Wasserstein barycenter by LP, modified
B-ADMM (our approach) and IBP. The runtime reported is based on MATLAB imple-
mentations.

methods. We obtained results for two cases: barycenters with support size m = 6
and barycenters with support size m = 60. We use relatively small values of m here
in comparison with the existing applications of IBP in imaging science because our
focus is on large data size but low support size (sparse support). The obtained
barycenters are then evaluated by comparing the objective function (Eq. (4.2))
with that solved directly by the full batch LP (Algorithm 4.2)—the yardstick in
the comparison.
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The bare form of IBP treats the case of pre-fixed support points while B-ADMM
does not constrain the locations. In order to compare the two methods on a
common ground, we used two tracks of experiments. In the first track the locations
of support points in the barycenters are fixed and shared by all the algorithms,
while in the second track both locations and weights are optimized. To adopt IBP
in the second track, we experimented with a version of IBP that can automatically
restart and update its support points. The restart criterion is that the constraint
satisfies certain conditions described in [2, 21]. Generally speaking, the larger ε0 is
the fewer iterations are needed before a restart is evoked. This variant of IBP does
not have a descending objective.4 Therefore, we chose to terminate the iterations
when 〈C,Π〉 is detected to increase. The actual implementation can be found in
our supplement. In MATLAB, we found IBP to be approximately 10 times faster
than B-ADMM per iteration. On the other hand, being faster in one iteration
does not necessarily mean faster speed overall. We report the exact numbers of
iterations and seconds before reaching a stopping criterion for both methods.

The results of the two tracks of experiments for support size m = 6, 60 by LP,
the modified B-ADMM (R1 and R2 as explained in Section 4.3.3) and IBP, are
presented in Table 4.5. The performance is measured by the value achieved for the
objective (a.k.a. distortion) function. The results show that in both tracks, when
dealing with sparse support distribution data, B-ADMM achieves lower distortion
than IBP does, and furthermore, B-ADMM is quite close to LP. The gap between
B-ADMM and LP is smaller than the gap between IBP and B-ADMM. On the
other hand, when ε0 is relatively large, IBP can be much faster. There is no
tuning of hyper-parameters in B-ADMM. For IBP, ε0 influences the result, but
not by too much as long as it is not too small. Considering the fast speed at
large ε0, we may favor relatively large ε0 when applying IBP. For the first track
experiments, the objective function obtained by IBP is considerably larger than that
B-ADMM obtains. We could not push the objective function by IBP to the same
level of B-ADMM by letting ε0 → 0. At ε0 = 0.01, 0.005, because double-precision
overflow occurs, triggering the thresholding trick. The IBP results with thresholding
triggered are marked by star (∗) in Table 4.5. These results are actually much
worse than the others, an observation consistent with the incorrect coupling weights

4It is because the entropic regularization term is not considered in the update of support
points.
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obtained when this trick is applied in the first pilot study. For the second track
experiments, B-ADMM still achieves lower values of the objective function, but the
difference from IBP is not as remarkable.

In comparison to the full LP approach, the modified B-ADMM does not yield
the exact local minimum. This result reminds us that the modified B-ADMM is
still an approximation method, and it cannot fully replace subgradient descent
based methods that minimize the objective to a true local minimum.

4.5 Wasserstein Non-negative Matrix Factorization
We now illustrate how the proposed Gibbs-OT in Chapter 3 can be used as a
ready-to-plugin inexact oracle for a typical WLM — Wasserstein NMF [23,24]. The
data parallelization of this framework is natural because the Gibbs-OT samplers
subject to different instances are independent.

4.5.1 Problem Formulation

Given a set of discrete probability measures {Φi}ni=1 (data) over Rd, we want
to estimate a model Θ = {Ψk}Kk=1, such that for each Φi, there exists a mem-
bership vector β(i) ∈ ∆K : Φi ≈

∑K
k=1 β

(i)
k Ψk, where each Ψk is again a dis-

crete probability measure to be estimated. Therefore, Wasserstein NMF reads
minΘ,Ξ

∑n
i=1W

(
Φi,

∑K
k=1 β

(i)
k Ψk

)
, where Ξ = (β(1), . . . , β(n)) is the collection of

membership vectors, andW is the Wasserstein distance. One can write the problem
by plugging Eq. (3.3) in the dual formulation:

min
Θ,Ξ

max
F={fi}n

i=1

∑n

i=1

[
〈ŵ(i),gi〉 − 〈w(i),hi〉

]
(4.31)

s.t. Ψk =
∑m

i=1 v
(k)
i δxi

, (4.32)

Φ̂(i) =
∑K

k=1 β
(i)
k Ψk , (4.33)

fi ∈ Ω
(
M(Φ̂(i),Φi)

)
, (4.34)

The work presented in this section has been published in the form of a research paper: Jianbo
Ye, James Z. Wang and Jia Li, “A Simulated Annealing based Inexact Oracle for Wasserstein Loss
Minimization,” Proceedings of the 34th International Conference on Machine Learning (ICML),
Sydney, Australia, Vol 70, pp 3940–3948, August 2017.
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where ŵ(i) ∈ ∆m is the weight vector of discrete probability measure Φ̂(i) and
w(i) ∈ ∆mi

is the weight vector of Φ(i). M(·, ·) denotes the transportation cost
matrix between the supports of two measures. The global optimization solves
all three sets of variables (Θ,Ξ, F ). In the sequel, we assume support points of
{Ψk}mk=1 — {xi}mi=1 are shared and pre-fixed.

4.5.2 Algorithm

At every epoch, one updates variables either sequentially (indexed by i) or all
together. It is done by first executing the Gibbs-OT oracle subject to the i-th
instance and then updating v(k) and the membership vector β(i) accordingly at a
chosen step size γ > 0. At the end of each epoch, the temperature parameter T
is adjusted T := T

(
1−

√
1

m+m̄

)
, where m̄ = 1

n

∑n
i=1mi . For each instance i, the

algorithm proceeds with the following steps iteratively:

1. Initiate from the last computed U/V sample subject to instance i, execute the
Gibbs-OT Gibbs sampler at constant temperature T until a mixing criterion
is met, and get Ui.

2. For k = 1, . . . , K, update v(k) ∈ ∆m based on gradient β(i)
k Ui using the

iterates of online mirror descent (MD) subject to the step-size γ [63].

3. Also update the membership vector β(i) ∈ ∆K based on gradient

(〈v(1),Ui〉, . . . , 〈v(K),Ui〉)T

using the iterates of accelerated mirror descent (AMD) with restarts subject
to the same step-size γ [67].

We note that the practical speed-ups we achieved via the above procedure is
the warm-start feature in Step 1. If one uses a black-box OT solver, this dimension
of speed-ups is not viable.

4.5.3 Results

We investigate the empirical convergence of the proposed Wasserstein NMF method
by two datasets: one is a subset of MNIST handwritten digit images which contains
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200 digits of “5”, and the other is the ORL 400-face dataset. Our results are
based on a C/C++ implementation with vectorization. In particular, we set
K = 40, γ = 2.0 for both datasets. The learned components are visualized together
with alternative approaches (smoothed W-NMF [23] and regular NMF) in Appendix
Figs. 4.5 and 4.6. From these figures, we observe that our learned components
using Gibbs-OT are shaper than the smoothed W-NMF. This can be explained by
the fact that Gibbs-OT can potentially push for higher quality of approximation by
gradually annealing the temperature. We also observe that the learned components
might possess some salt-and-pepper noise. This is because the Wasserstein distance
by definition is not very sensitive to the sub-pixel displacements. On a single-core
of a 3.3 GHz Intel Core i5 CPU, the average time spent for each epoch for these two
datasets are 0.84 seconds and 16.8 seconds, respectively. It is about two magnitude
faster than fully solving all OTs via a commercial LP solver 5.

5We use the specialized network flow solver in Mosek (https://www.mosek.com) for the
computation, which is found faster than general simplex or IPM solver at moderate problem scale.

79



Figure 4.5. NMF components learned by different methods (K = 40) on the 200
digit “5” images. Top: regular NMF; Middle: W-NMF with entropic regularization
(ε = 1/100, ρ1 = ρ2 = 1/200); Bottom: W-NMF using Gibbs-OT. It is observed that the
components of W-NMF with entropic regularization are smoother than those optimized
with Gibbs-OT.
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Figure 4.6. NMF components learned by different methods (K = 40) on the ORL face
images. Top: regular NMF; Middle: W-NMF with entropic regularization (ε = 1/100,
ρ1 = ρ2 = 1/200); Bottom: W-NMF using Gibbs-OT, in which the salt and pepper noises
are observed due to the fact that Wasserstein distance is insensitive to the subpixel mass
displacement [3].
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Chapter 5 |
Determining Gains Acquired from
Word Embedding: An Optimal
Transport Application

5.1 Introduction
Word embeddings (a.k.a. word vectors) have been broadly adopted for document
analysis [58,68]. The embeddings can be trained from external large-scale corpus
and then easily utilized for different data. To a certain degree, the knowledge
mined from the corpus, possibly in very intricate ways, is coded in the vector space,
the samples of which are easy to describe and ready for mathematical modeling.
Despite the appeal, researchers will be interested in knowing how much gain an
embedding can bring forth over the performance achievable by existing bag-of-words
based approaches. Moreover, how can the gain be quantified? Such a preliminary
evaluation will be carried out before building a sophisticated pipeline of analysis.

Almost every document analysis model used in practice is constructed assuming
a certain basic representation—bag-of-words or word embeddings—for the sake of
computational tractability. For example, after word embedding is done, high-level

The work presented in this chapter has been published in the form of a research paper: Jianbo
Ye, Yanran Li, Zhaohui Wu, James Z. Wang, Wenjie Li, and Jia Li, “Determining Gains Acquired
from Word Embeddings Quantitatively Using Discrete Distribution Clustering,” Proceedings of
The Annual Meeting of the Association for Computational Linguistics (ACL), Vancouver, Canada,
Vol 1, pp 1847–1856, July 2017.

82



models in the embedded space, such as entity representations, similarity measures,
data manifolds, hierarchical structures, language models, and neural architectures,
are designed for various tasks. In order to invent or enhance analysis tools, we
want to understand precisely the pros and cons of the high-level models and the
underlying representations. Because the model and the representation are tightly
coupled in an analytical system, it is not easy to pinpoint where the gain or loss
found in practice comes from. Should the gain be credited to the mechanism of
the model or to the use of word embeddings? As our experiments demonstrate,
introducing certain assumptions will make individual methods effective only if
certain constraints are met. We will address this issue under an unsupervised
learning framework.

Our proposed clustering paradigm has several advantages. Instead of packing
the information of a document into a fixed-length vector for subsequent analysis, we
treat a document more thoroughly as a distributional entity. In our approach, the
distance between two empirical nonparametric measures (or discrete distributions)
over the word embedding space is defined as the Wasserstein metric (a.k.a. the
Earth Mover’s Distance or EMD) [5,56]. Comparing with a vector representation,
an empirical distribution can represent with higher fidelity a cloud of points such
as words in a document mapped to a certain space. In the extreme case, the
empirical distribution can be set directly as the cloud of points. In contrast, a
vector representation reduces data significantly, and its effectiveness relies on the
assumption that the discarded information is irrelevant or nonessential to later
analysis. This simplification itself can cause degradation in performance, obscuring
the inherent power of the word embedding space.

Our approach is intuitive and robust. In addition to a high fidelity representation
of the data, the Wasserstein distance takes into account the cross-term relationship
between different words in a principled fashion. According to the definition, the
distance between two documents A and B are the minimum cumulative cost that
words from document A need to “travel” to match exactly the set of words for
document B. Here, the travel cost of a path between two words is their (squared)
Euclidean distance in the word embedding space. Therefore, how much benefit the
Wasserstein distance brings also depends on how well the word embedding space
captures the semantic difference between words.

While Wasserstein distance is well suited for document analysis, a major obstacle
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of approaches based on this distance is the computational intensity, especially for
the original D2-clustering method [19]. The main technical hurdle is to compute
efficiently the Wasserstein barycenter, which is itself a discrete distribution, for a
given set of discrete distributions. Thanks to the recent advances in the algorithms
for solving Wasserstein barycenters [2, 8, 11, 21], one can now perform document
clustering by directly treating them as empirical measures over a word embedding
space. Although the computational cost is still higher than the usual vector-based
clustering methods, we believe that the new clustering approach has reached a
level of efficiency to justify its usage given how important it is to obtain high-
quality clustering of unstructured text data. For instance, clustering is a crucial
step performed ahead of cross-document co-reference resolution [69], document
summarization, retrospective events detection, and opinion mining [70].

Our work has two main contributions. First, we create a basic tool of document
clustering, which is easy to use and scalable. The new method leverages the latest
numerical toolbox developed for optimal transport. It achieves state-of-the-art
clustering performance across heterogeneous text data—an advantage over other
methods in the literature. Second, the method enables us to quantitatively inspect
how well a word-embedding model can fit the data and how much gain it can
produce over the bag-of-words models.

5.2 Related Work
In the original D2-clustering framework proposed by [19], calculating Wasserstein
barycenter involves solving a large-scale LP problem at each inner iteration, severely
limiting the scalability and robustness of the framework. Such high magnitude of
computations had prohibited it from deploying in many real-world applications until
recently. To accelerate the computation of Wasserstein barycenter, and ultimately
to improve D2-clustering, multiple numerical algorithmic efforts have been made in
the recent few years [2, 8, 11, 21].

Although the effectiveness of Wasserstein distance has been well recognized
in the computer vision and multimedia literature, the property of Wasserstein
barycenter has not been well understood. To our knowledge, there still lacks
systematic study of applying Wasserstein barycenter and D2-clustering in document
analysis with word embeddings.
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A closely related work by Kusner et al. [5] connects the Wasserstein distance to
the word embeddings for comparing documents. Our work differs from theirs in the
methodology. We directly pursue a scalable clustering setting rather than construct
a nearest neighbor graph based on calculated distances, because the calculation
of the Wasserstein distances of all pairs is too expensive to be practical. Kusner
et al. [5] used a lower bound that was less costly to compute in order to prune
unnecessary full distance calculation, but the scalability of this modified approach
is still limited, an issue to be discussed in Section 5.4.3. On the other hand, our
approach adopts the framework similar to the K-means which is of complexity O(n)
per iteration and usually converges within just tens of iterations. The computation
of D2-clustering, though in its original form was magnitudes heavier than typical
document clustering methods, can now be efficiently carried out with parallelization
and proper implementations [8].

5.3 The Method
This section introduces the distance, the D2-clustering technique, the fast com-
putation framework, and how they are used in the proposed document clustering
method.

5.3.1 Wasserstein Distance

Suppose we represent each document dk consisting mk unique words by a discrete
measure or a discrete distribution, where k = 1, . . . , N with N being the sample
size:

dk =
∑mk

i=1w
(k)
i δ

x
(k)
i
. (5.1)

Here δx denotes the Dirac measure with support x, and w(k)
i ≥ 0 is the “importance

weight” for the i-th word in the k-th document, with ∑mk
i=1w

(k)
i = 1. And x(k)

i ∈ Rd,
called a support point, is the semantic embedding vector of the i-th word. The
2nd-order Wasserstein distance between two documents d1 and d2 (and likewise for
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any document pairs) is defined by the following LP problem: W 2(d1, d2) :=

min
Π

∑
i,j πi,j‖x

(1)
i − x

(2)
j ‖2

2

s.t. ∑m2
j=1 πi,j = wi, ∀i,

∑m1
i=1 πi,j = wj,∀j

πi,j ≥ 0,∀i, j ,

(5.2)

where Π = {πi,j} is a m1 ×m2 coupling matrix, and let {Ci,j := ‖x(1)
i − x

(2)
j ‖2

2}
be transportation costs between words. Wasserstein distance is a true metric [1]
for measures, and its best exact algorithm has a complexity of O(m3 logm) [33], if
m1 = m2 = m.

5.3.2 Discrete Distribution (D2-) Clustering

D2-clustering [19] iterates between the assignment step and centroids updating step
in a similar way as the Lloyd’s K-means. Suppose we are to find K clusters. The
assignment step finds each member distribution its nearest mean from K candidates.
The mean of each cluster is again a discrete distribution with m support points,
denoted by ci, i = 1, . . . , K. Each mean is iteratively updated to minimize its total
within cluster variation. We can write the D2-clustering problem as follows: given
sample data {dk}Nk=1, support size of means m, and desired number of clusters K,
D2-clustering solves

min
c1,...,cK

∑N

k=1 min
1≤i≤K

W 2(dk, ci) , (5.3)

where c1, . . . , cK are Wasserstein barycenters. At the core of solving the above
formulation is an optimization method that searches the Wasserstein barycenters
of varying partitions. Therefore, we concentrate on the following problem. For
each cluster, we reorganize the index of member distributions from 1, . . . , n. The
Wasserstein barycenter [2, 20] is by definition the solution of

min
c

∑n

k=1W
2(dk, c) , (5.4)

where c = ∑m
i=1wiδxi

. The above Wasserstein barycenter formulation involves two
levels of optimization: the outer level finding the minimizer of total variations, and
the inner level solving Wasserstein distances. We remark that in D2-clustering,
we need to solve multiple Wasserstein barycenters rather than a single one. This
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constitutes the third level of optimization.

5.3.3 Modified Bregman ADMM for Wasserstein Barycenter

The recent modified Bregman alternating direction method of multiplier (B-ADMM)
algorithm [8], motivated by the work by Wang and Banerjee [31], is a practical
choice for computing Wasserstein barycenters. We briefly sketch their algorithmic
procedure of this optimization method here for the sake of completeness. To solve
for Wasserstein barycenter defined in Eq. (5.4), the key procedure of the modified
Bregman ADMM involves iterative updates of four block of primal variables: the
support points of c — {xi}mi=1 (with transportation costs {Ci,j}(k) for k = 1, . . . , n),
the importance weights of c — {wi}mi=1, and two sets of split matching variables
— {π(k,1)

i,j } and {π
(k,2)
i,j }, for k = 1, . . . , n, as well as Lagrangian variables {λ(k)

i,j } for
k = 1, . . . , n. In the end, both {π(k,1)

i,j } and {π
(k,2)
i,j } converge to the matching weight

in Eq. (5.2) with respect to d(c, dk). The iterative algorithm proceeds as follows
until c converges or a maximum number of iterations are reached: given constant

τ ≥ 10, ρ ∝
∑
i,j,k C

(k)
i,j∑n

k=1 mkm
and round-off tolerance ε = 10−10, those variables are

updated in the following order.
Update {xi}mi=1 and {C(k)

i,j } in every τ iterations:

xi := 1
nwi

∑n

k=1

∑mk

j=1 π
(k,1)
i,j x

(k)
j ,∀i, (5.5)

C
(k)
i,j := ‖xi − x(k)

j ‖2
2, ∀i, j and k. (5.6)

Update {π(k,1)
i,j } and {π

(k,2)
i,j }. For each i, j and k,

π
(k,2)
i,j := π

(k,2)
i,j exp

−C(k)
i,j − λ

(k)
i,j

ρ

+ ε , (5.7)

π
(k,1)
i,j := w

(k)
j π

(k,2)
i,j

/(∑m

l=1 π
(k,2)
l,j

)
, (5.8)

π
(k,1)
i,j := π

(k,1)
i,j exp

(
λ

(k)
i,j /ρ

)
+ ε . (5.9)

Update {wi}mi=1. For i = 1, . . . ,m ,

wi :=
n∑
k=1

∑mk
j=1 π

(k,1)
i,j∑

i,j π
(k,1)
i,j

, (5.10)
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wi := wi

/(∑m

i=1wi
)
. (5.11)

Update {π(k,2)
i,j } and {λ

(k)
i,j }. For each i, j and k,

π
(k,2)
i,j := wiπ

(k,1)
i,j

/(∑mk

l=1 π
(k,1)
i,l

)
, (5.12)

λ
(k)
i,j := λ

(k)
i,j + ρ

(
π

(k,1)
i,l − π

(k,2)
i,l

)
. (5.13)

Eq. (5.5)-(5.13) can all be vectorized as very efficient numerical routines. In a
data parallel implementation, only Eq. (5.5) and Eq. (5.10) (involving ∑n

k=1) needs
to be synchronized. The software package detailed in [8] was used to generate
relevant experiments. We make available our codes and pre-processed datasets for
reproducing all experiments of our approach.

5.4 Experimental Results

5.4.1 Datasets and Evaluation Metrics

We prepare six datasets to conduct a set of experiments. Two short-text datasets are
created as follows. (D1) BBCNews abstract: We concatenate the title and the first
sentence of news posts from BBCNews dataset1 to create an abstract version. (D2)
Wiki events: Each cluster/class contains a set of news abstracts on the same story
such as “2014 Crimean Crisis” crawled from Wikipedia current events following [52];
this dataset offers more challenges because it has more fine-grained classes and
fewer documents (with shorter length) per class than the others. It also shows more
realistic nature of applications such as news event clustering.

We also experiment with two long-text datasets and two domain-specific text
datasets. (D3) Reuters-21578: We obtain the original Reuters-21578 text dataset
and process as follows: remove documents with multiple categories, remove docu-
ments with empty body, remove duplicates, and select documents from the largest
ten categories. Reuters dataset is a highly unbalanced dataset (the top category
has more than 3,000 documents while the 10-th category has fewer than 100). This
imbalance induces some extra randomness in comparing the results. (D4) 20News-

1BBCNews and BBCSport are downloaded from
http://mlg.ucd.ie/datasets/bbc.html
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groups “bydate” version: We obtain the raw “bydate” version and process them
as follows: remove headers and footers, remove URLs and Email addresses, delete
documents with less than ten words. 20Newsgroups have roughly comparable sizes
of categories. (D5) BBCSports. (D6) Ohsumed and Ohsumed-full: Documents are
medical abstracts from the MeSH categories of the year 1991. Specifically, there
are 23 cardiovascular diseases categories.

Evaluating clustering results is known to be nontrivial. We use the following
three sets of quantitative metrics to assess the quality of clusters by knowing the
ground truth categorical labels of documents: (i) Homogeneity, Completeness, and
V-measure [53]; (ii) Adjusted Mutual Information (AMI) [6]; and (iii) Adjusted
Rand Index (ARI) [59]. For sensitivity analysis, we use the homogeneity score [53]
as a projection dimension of other metrics, creating a 2D plot to visualize the
metrics of a method along different homogeneity levels. Generally speaking, more
clusters leads to higher homogeneity by chance.

5.4.2 Methods in Comparison

We examine four categories of methods that assume a vector-space model for
documents, and compare them to our D2-clustering framework. When needed, we
use K-means++ to obtain clusters from dimension reduced vectors. To diminish the
randomness brought by K-mean initialization, we ensemble the clustering results of
50 repeated runs [71], and report the metrics for the ensembled one. The largest
possible vocabulary used, excluding word embedding based approaches, is composed
of words appearing in at least two documents. On each dataset, we select the same
set of Ks, the number of clusters, for all methods. Typically, Ks are chosen around
the number of ground truth categories in logarithmic scale.

We prepare two versions of the TF-IDF vectors as the unigram model. The
ensembled K-means methods are used to obtain clusters. (1) TF-IDF vector [72]. (2)
TF-IDF-N vector is found by choosing the most frequent N words in a corpus, where
N ∈ {500, 1000, 1500, 2000}. The difference between the two methods highlights
the sensitivity issue brought by the size of chosen vocabulary.

We select three dimensionality reduction methods. After the dimensionality
is reduced, ensembled K-means methods are used to obtain clusters. We remark
that most manifold learning approaches, including those we’ve experimented, are
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transductive, scaling quadratically w.r.t. the sample size. This makes those ap-
proaches difficult to be applied in online or large-scale clustering settings. (3)
Spectral Clustering (Laplacian). We apply the Laplacian Eigenmaps [73] with vary-
ing numbers of components to reduce the dimension of Tfidf vectors. Their cosine
affinities are constructed based on nearest neighbors. (4) Latent Semantic Indexing
(LSI) [74]. We compute SVD of the Tfidf matrix, and choose varying numbers
of components to form the dimension reduced vectors. (5) Locality Preserving
Projection (LPP) [75, 76]. LPP is a popular document indexing method which
produces low-dimensional representations. We follow the suggested setup in Cai et
al. [76] and use the cosine affinity matrix.2 We note that extra hyper-parameters
are chosen from a pre-selected set empirically achieving the best performances.

We select two topic models. topic modeling techniques are originally developed
to characterize documents with multiple topics, rather than cluster them into disjoint
groups. Nevertheless, by assigning each document to its most significant topic, a
clustering result can be obtained. We highlight that mixture-of-topics assumption
that commonly utilized in topic modeling makes many of their approaches less
sensitive to explore the homogeneity of clusters when increasing topics are estimated.
(6) Non-negative Matrix Factorization (NMF) [77, 78]. We compute NMF of the
Tfidf matrix by choosing K components, where K is the desired number of clusters.
Documents (by row) are assigned to their largest column respectively in the
factorization matrix to form clusters. (7) Latent Dirichlet Allocation (LDA) [61,79].
Similar to NMF, we solve a LDA model of the word counting matrix by setting K
topics. Because there are many hyper-parameters in a LDA model, our chosen set
of hyper-parameters are set to achieve the low perplexity empirically. Adapting
LDA to clustering, we naively group documents based on their most likely topics.
Empirically, we find it works better than K-means of topic proportion vectors of
documents.

Three methods based on word embeddings: we use four pre-trained word
embeddings in our experiment to cross validate the effects of different pre-trained
word embeddings. Three of them are trained on general large corpora, such as
news articles and wikipedia pages. They are 300-dimensional SkipGram [58] using
negative sampling trained on GoogleNews, 300-dimensional Glove [57] trained on
Wikipedia corpus, standard 400-dimensional SkipGram trained on a 2010 Wikipedia

2http://www.cad.zju.edu.cn/home/dengcai/Data/DimensionReduction.html
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dump3 by our own (with window size of 10 and minimum count of 10). The first
two can be downloaded publicly.4 When compared with other non-embedding
methods, best results of the three are reported.

We also use SkipGram to train domain-specific word embeddings using Ohsumed
dataset (with window size of 20 and minimum count of 2), which is the fourth model.
(8) Average of word vectors (AvgDoc) computes the average of the embeddings of
distinctive words in a document. In practice, we find it outperforms one using
weighted schema like Tfidf or Tf, especially for long texts. (9) Paragraph Vectors
(PV) [80]. Two unsupervised methods, i.e. PVDM and PVDBOW, are proposed in
Le and Mikolov [80], in which pre-trained word vectors can be fine-tuned to obtain
embeddings for documents. We have experimented with both methods PVDM and
PVDBOW, and find PVDM performs significantly worse than PVDBOW on all
datasets, thus only the results of PVDBOW are reported.

5.4.3 Runtime

We report the runtime for our approach on two largest datasets. The experiments
regarding other smaller datasets all terminate within minutes in a single machine,
which we omit due to space limitation. Like K-means, the runtime by our approach
depends on the number of actual iterations before a termination criterion is met.
In the Newsgroups dataset, with m = 100 and K = 45, the time per iteration is
121 seconds on 48 processors. In Reuters dataset, with m = 100 and K = 20, the
time per iteration is 190 seconds on 24 processors. Each run terminates in around
tens of iterations typically, upon which the percentage of label changes is less than
0.1%.

Our approach adopts the Elkan’s algorithm [50] pruning unnecessary computa-
tions of Wasserstein distance in assignment steps of K-means. For the Newsgroups
data (with m = 100 and K = 45), our approach terminates in 36 iterations, and
totally computes 12, 162, 717 (≈ 3.5%× 186122) distance pairs in assignment steps,
saving 60% (≈ 1 − 12,162,717

36×45×18612) distance pairs to calculate in the standard D2-
clustering. In comparison, the clustering approaches based on K-nearest neighbor
(KNN) graph with the prefetch-and-prune method of [5] needs substantially more

3http://www.psych.ualberta.ca/~westburylab/downloads/westburylab.wikicorp.
download.html

4https://code.google.com/p/word2vec/ http://nlp.stanford.edu/projects/glove/
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pairs to compute Wasserstein distance, meanwhile the speed-ups also suffer from
the curse of dimensionality. Their detailed statistics are reported in Table 5.1.
Based on the results, our approach is much more practical as a basic document
clustering tool.

Method EMD counts (%)
Our approach d = 400, K = 10 2.0
Our approach d = 400, K = 40 3.5

KNN d = 400, K = 1 73.9
KNN d = 100, K = 1 53.0
KNN d = 50, K = 1 23.4

Table 5.1. Percentage of total 186122 Wasserstein distance pairs needed to compute on
the full Newsgroup dataset. The KNN graph based on 1st order Wasserstein distance is
computed from the prefetch-and-prune approach according to [5].

5.4.4 Results

We now summarize our numerical results.

Dataset size class length est. #voc.
BBCNews abstr. 2,225 5 26 7,452

Wiki events 1,983 54 22 5,313
Reuters 7,316 10 141 27,792

Newgroups 18,612 20 245 55,970
BBCSports 737 5 345 13,105
Ohsumed 4,340 23 - -

Ohsumed-full∗ 34,386 23 184 43,895

Table 5.2. Description of corpus data that have been used in our experiments. ∗Ohsumed-
full dataset is used for pre-training word embeddings only. Ohsumed is a downsampled
evaluation set resulting from removing posts from Ohsumed-full that belong to multiple
categories.

Regular text datasets. The first four datasets in Table 5.2 cover quite general
and broad topics. We consider them to be regular and representative datasets
encountered more frequently in applications. We report the clustering performances
of the ten methods in Fig. 5.1, where three different metrics are plotted against
the clustering homogeneity. The higher result at the same level of homogeneity is
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Figure 5.1. The quantitative cluster metrics used for performance evaluation of “BBC
title and abstract”, “Wiki events”, “Reuters”, and “Newsgroups” (row-wise, from top to
down). Y-axis corresponds to AMI, ARI, and Completeness, respective (column-wise,
from left to right). X-axis corresponds to Homogeneity for sensitivity analysis.
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better, and the ability to achieve higher homogeneity is also welcomed. Clearly,
D2-clustering is the only method that shows robustly superior performances among
all ten methods. Specifically, it ranks first in three datasets, and second in the other
one. In comparison, LDA performs competitively on the “Reuters” dataset, but is
substantially unsuccessful on others. Meanwhile, LPP performs competitively on
the “Wiki events” and “Newsgroups” datasets, but it underperforms on the other
two. Laplacian, LSI, and Tfidf-N can achieve comparably performance if their
reduced dimensions are fine tuned, which unfortunately is unrealistic in practice.
NMF is a simple and effective method which always gives stable, though subpar,
performance.
Short texts vs. long texts. D2-clustering performs much more impressively
on short texts (“BBC abstract” and “Wiki events”) than it does on long texts
(“Reuters” and “Newsgroups”). This outcome is somewhat expected, because the
bag-of-words method suffers from high sparsity for short texts, and word-embedding
based methods in theory should have an edge here. As shown in Fig. 5.1, D2-
clustering has indeed outperformed other non-embedding approaches by a large
margin on short texts (improved by about 40% and 20% respectively). Nevertheless,
we find lifting from word embedding to document clustering is not without a cost.
Neither AvgDoc nor PV can perform as competitively as D2-clustering performs on
both.

regular dataset domain-specific dataset
BBCNews ab-
stract

Wik events Reuters Newsgroups BBCSport Ohsumed Avg.

Tfidf-N 0.389 0.448 0.470 0.388 0.883 0.210 0.465
Tfidf 0.376 0.446 0.456 0.417 0.799 0.235 0.455

Laplacian 0.538 0.395 0.448 0.385 0.855 0.223 0.474
LSI 0.454 0.379 0.400 0.398 0.840 0.222 0.448
LPP 0.521 0.462 0.426 0.515 0.859 0.284 0.511
NMF 0.537 0.395 0.438 0.453 0.809 0.226 0.476
LDA 0.151 0.280 0.503 0.288 0.616 0.132 0.328

AvgDoc 0.753 0.312 0.413 0.376 0.504 0.172 0.422
PV 0.428 0.289 0.471 0.275 0.553 0.233 0.375

D2C 0.759 0.545 0.534 0.493 0.812 0.260 0.567

Table 5.3. Best AMIs [6] of compared methods on different datasets and their averaging.
The best results are marked in bold font for each dataset, the 2nd and 3rd are marked by
blue and magenta colors respectively.

Domain-specific text datasets. We are also interested in how word embedding
can help group domain-specific texts into clusters. In particular, does the semantic
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knowledge “embedded” in words provides enough clues to discriminate fine-grained
concepts? We report the best AMI achieved by each method in Table 5.3. Our
preliminary result indicates state-of-the-art word embeddings do not provide enough
gain here to exceed the performance of existing methodologies. On the unchallenging
one, the “BBCSport” dataset, basic bag-of-words approaches (Tfidf and Tfidf-N)
already suffice to discriminate different sport categories; and on the difficult one,
the “Ohsumed” dataset, D2-clustering only slightly improves over Tfidf and others,
ranking behind LPP. Meanwhile, we feel the overall quality of clustering “Ohsumed”
texts is quite far from useful in practice, no matter which method to use. More
discussions will be provided next.

5.4.5 Sensitivity to Word Embeddings.

We validate the robustness of D2-clustering with different word embedding models,
and we also show all their results in Fig. 5.2. As we mentioned, the effectiveness
of Wasserstein document clustering depends on how relevant the utilized word
embeddings are with the tasks. In those general document clustering tasks, however,
word embedding models trained on general corpus perform robustly well with
acceptably small variations. This outcome reveals our framework as generally
effective and not dependent on a specific word embedding model. In addition, we
also conduct experiments with word embeddings with smaller dimensions, at 50
and 100. Their results are not as good as those we have reported (therefore detailed
numbers are not included due to space limitation).
Inadequate embeddings may not be disastrous. In addition to our standard
running set, we also used D2-clustering with purely random word embeddings,
meaning each word vector is independently sampled from spherical Gaussian at 300
dimension, to see how deficient it can be. Experimental results show that random
word embeddings degrade the performance of D2-clustering, but it still performs
much better than purely random clustering, and is even consistently better than
LDA. Its performances across different datasets is highly correlated with the bag-
of-words (Tfidf and Tfidf-N). By comparing a pre-trained word embedding model
to a randomly generated one, we find that the extra gain is significant (> 10%) in
clustering four of the six datasets. Their detailed statistics are in Table 5.4 and
Fig. 5.3.
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Figure 5.2. Sensitivity analysis: the clustering performances of D2C under different
word embeddings. Upper: Reuters, Lower: Newsgroups. An extra evaluation index
(CCD [4]) is also used.
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ARI AMI V-measure
BBCNews .146 .187 .190
abstract .792+442% .759+306% .762+301%

Wiki events .194 .369 .463
.277+43% .545+48% .611+32%

Reuters .498 .524 .588
.515+3% .534+2% .594+1%

Newsgroups .194 .358 .390
.305+57% .493+38% .499+28%

BBCSport .755 .740 .760
.801+6% .812+10% .817+8%

Ohsumed .080 .204 .292
.116+45% .260+27% .349+20%

Table 5.4. Comparison between random word embeddings (upper row) and meaningful
pre-trained word embeddings (lower row), based on their best ARI, AMI, and V-measures.
The improvements by percentiles are also shown in the subscripts.

25%
75%

68%
32%

98% 2% 73%
27%

91% 9%
78%

22%

Figure 5.3. Pie charts of clustering gains in AMI calculated from our framework. Light
region is by bag-of-words, and dark region is by pre-trained word embeddings. Six
datasets (from left to right): BBCNews abstract, Wiki events, Reuters, Newsgroups,
BBCSport, and Ohsumed.

5.5 Discussions
Performance advantage. There has been one immediate observation from these
studies, D2-clustering always outperforms two of its degenerated cases, namely
Tf-idf and AvgDoc, and three other popular methods: LDA, NMF, and PV, on all
tasks. Therefore, for document clustering, users can expect to gain performance
improvements by using our approach.
Clustering sensitivity. From the four 2D plots in Fig. 5.1, we notice that the
results of Laplacian, LSI and Tfidf-N are rather sensitive to their extra hyper-
parameters. Once the vocabulary set, weight scheme and embeddings of words are

97



fixed, our framework involves only two additional hyper-parameters: the number of
intended clusters, K, and the selected support size of centroid distributions, m. We
have chosen more than one m in all related experiments (m = {64, 100} for long
documents, and m = {10, 20} for short documents). Our empirical experiments
show that the effect of m on different metrics is less sensitive than the change of
K. Results at different K are plotted for each method (Fig. 5.1). The gray dots
denote results of multiple runs of D2-clustering. They are always contracted around
the top-right region of the whole population, revealing the predictive and robustly
supreme performance.
When bag-of-words suffices. Among the results of “BBCSport” dataset, Tfidf-N
shows that by restricting the vocabulary set into a smaller one (which may be more
relevant to the interest of tasks), it already can achieve highest clustering AMI
without any other techniques. Other unsupervised regularization over data is likely
unnecessary, or even degrades the performance slightly.
Toward better word embeddings. Our experiments on the Ohsumed dataset
have been limited. The result shows that it could be highly desirable to incorporate
certain domain knowledge to derive more effective vector embeddings of words
and phrases to encode their domain-specific knowledge, such as jargons that have
knowledge dependencies and hierarchies in educational data mining, and signal
words that capture multi-dimensional aspects of emotions in sentiment analysis.

Finally, we report the best AMIs of all methods on all datasets in Table 5.3.
By looking at each method and the average of best AMIs over six datasets, we
find our proposed clustering framework often performs competitively and robustly,
which is the only method reaching more than 90% of the best AMI on each dataset.
Furthermore, this observation holds for varying lengths of documents and varying
difficulty levels of clustering tasks.

This chapter introduces a nonparametric clustering framework for document
analysis. Its computational tractability, robustness and supreme performance, as a
fundamental tool, are empirically validated. Its ease of use enables data scientists
to apply it for the pre-screening purpose of examining word embeddings in a specific
task. Finally, the gains acquired from word embeddings are quantitatively measured
from a nonparametric unsupervised perspective.

It would also be interesting to investigate several possible extensions to the
current clustering work. One direction is to learn a proper ground distance for
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word embeddings such that the final document clustering performance can be
improved with labeled data. The work by [81,82] have partly touched this goal with
an emphasis on document proximities. A more appealing direction is to develop
problem-driven methods to represent a document as a distributional entity, taking
into consideration of phrases, sentence structures, and syntactical characteristics.
We believe the framework of Wasserstein distance and D2-clustering creates room
for further investigation on complex structures and knowledge carried by documents.
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Chapter 6 |
Improving the Quality of Crowd-
sourced Affective Data: A Prob-
abilistic Modeling Application

6.1 Introduction
Humans’ sensitivity to affective stimuli intrinsically varies from one person to
another. Differences in gender, age, society, culture, personality, social status, and
personal experience can contribute to its high variability between people. Further,
inconsistencies may also exist for the same individual across environmental contexts
and current mood or affective state. The causal effects and factors for such affective
experiences have been extensively investigated, as evident in the literature on
psychological and human studies, where controlled experiments are commonly
conducted within a small group of human subjects — to ensure the reliability of
collected data. To complement the shortcomings of those controlled experiments,
ecological psychology aims to understand how objects and things in our surrounding
environments effect human behaviors and affective experiences, in which real-world
studies are favored over those within artificial laboratory environments. The key

The work presented in this chapter has been published in the form of a research paper: Jianbo
Ye, Jia Li, Michelle G. Newman, Reginald B. Adams, Jr. and James Z. Wang, “Probabilistic Multi-
graph Modeling for Improving the Quality of Crowdsourced Affective Data,” IEEE Transactions on
Affective Computing (TAC), 2017, 15 pages. https://doi.org/10.1109/TAFFC.2017.2678472
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ingredient of those ecological approaches is the availability of large-scale data
collected from human subjects, remedying the high complexity and heterogeneity
that the real-world has to offer. With the growing attention on affective computing,
multiple data-driven approaches have been developed to understand what particular
environmental factors drive the feelings of humans [83,84], and how those effects
differ among various sociological structures and between human groups.

One crucial hurdle for those affective computing approaches is the lack of
full-spectrum annotated stimuli data at a large scale. To address this bottleneck,
crowdsourcing-based approaches are highly helpful for collecting uncontrolled human
data from anonymous participants. In a recent study reported in [85], anonymous
subjects from the Internet were recruited to annotate a set of visual stimuli (images):
at each time point, after being presented with an image stimulus, participants
were asked to assess their personal psychological experiences using ordinal scales
for each of the affective dimensions: valence, arousal, dominance and likeness
(which means the degree of appreciation in our context). This study also collected
demographics data to analyze individual difference predictors of affective responses.
Because labeling a large number of visual stimuli can become tedious, even with
crowdsourcing, each image stimulus was examined by only a few subjects. This
study allowed tens of thousands of images to obtain at least one label from a
participant, which created a large data set for environmental psychology and
automated emotion analysis of images.

One interesting question to investigate, however, is whether the affective labels
provided by subjects are reliable. A related question is how to separate spammers
from reliable subjects, or at least to narrow the scope of data to a highly reli-
able subgroup. Here, spammers are defined as those participants who provide
answers without serious consideration of the presented questions. No answer from
a statistical perspective is known yet for crowdsourced affective data.

A great difficulty in analyzing affective data is caused by the absence of ground
truth in the first place, that is, there is no correct answer for evoked emotion.
It is generally accepted that even the most reliable subjects can naturally have
varied emotions. Indeed, with variability among human responses anticipated,
psychological studies often care about questions such as where humans are emo-
tionally consistent and where they are not, and which subgroups of humans are
more consistent than another. Given a population, many, if not the vast majority
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of stimuli may not have a consensus emotion at all. Majority voting or (weighted)
averaging to force an "objective truth" of the emotional response or probably for the
sake of convenience, as is routinely done in affective computing so that classification
on a single quantity can be carried out, is a crude treatment bound to erase or
disregard information essential for many interesting psychological studies, e.g., to
discover connections between varied affective responses and varied demographics.

The involvement of spammers as participating subjects introduces an extra
source of variation to the emotional responses, which unfortunately is tangled with
the "appropriate" variation. If responses associated with an image stimulus contain
answers by spammers, the inter-annotator variation for the specific question could
be as large as the variation across different questions, reducing the robustness of
any analysis. An example is shown in Fig. 6.1. Most annotators labeling this
image are deemed unreliable, and two of them are highly susceptible as spammers
according to our model. Investigators may be recommended to eliminate this image
or acquire more reliable labels for its use. Yet, one should not be swayed by this
example into the practice of discarding images that solicited responses of a large
range. Certain images are controversial in nature and will stimulate quite different
emotions to different viewers. Our system acquired the reliability scores shown in
Fig. 6.1 by examining the entire data set; the data on this image alone would not
be conclusive, in fact, far from so.

Facing the intertwined "appropriate" and "inappropriate" variations in the
subjects as well as the variations in the images, we are motivated to unravel the
sources of uncertainties by taking a global approach. The judgment on the reliability
of a subject cannot be a per-image decision, and has to leverage the whole data.
Our model was constructed to integrate these uncertainties, attempting to discern
them with the help of big data. In addition, due to the lack of ground truth labels,
we model the relational data that code whether two subjects’ emotion responses on
an image agree, bypassing the thorny questions of what the true labels are and if
they exist at all.

For the sake of automated emotion analysis of images, one also needs to narrow
the scope to parts of data, each of which have sufficient number of qualified labels.
Our work computes image confidences, which can support off-line data filtering or
guide on-line budgeted crowdsourcing practices.

In summary, systematic analysis of crowdsourced affective data is of great
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Annotator ID Valence Reliability
3474 5.1/8 0.08
2500 0.0/8 0.56
3475 0.0/8 0.34
2540 8.0/8 0.04

Image Confidence: 75% (≤ 90%)
Figure 6.1. An example illustrating one may need to acquire more reliable labels,
ensuring the image confidence is more than 0.9.

raw avg.: 4.06 out of 8 4.1 → 2.94 4.78 → 3.33 4.25 → 1.9
→ new: 2.51 out of 8

4.06 → 3.03 4.05 → 2.87 4.7 → 2.06 5.08 → 3.94

5.02 → 3.58 5.7 → 3.87 5.6 → 3 5.17 → 3.19 5.32 → 2.98

5.5 → 4.26 4.53 → 3 5.24 → 3.93 5.38 → 3.76 4.54 → 2.75
Figure 6.2. Images shown are considered of lower valence than their average valence
ratings (i.e., evoking a higher degree of negative emotions) after processing the data set
using our proposed method. Our method eliminates the contamination introduced by
spammers. The range of valence ratings is between 0 and 8.
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2.63 → 3.77 2.8 → 4.14 3.0 → 4.7 4.4 → 6.21 4.7 → 6.26
Figure 6.3. Images shown are considered of higher valence than their average valence
ratings (i.e., evoking a higher degree of positive emotions) after processing the data set
using our proposed method. Our method again eliminates the contamination introduced
by spammers. The range of valence ratings is between 0 and 8.

importance to human subject studies and affective computing, while remains an open
question. To substantially address the aforementioned challenges and expand the
evidential space for psychological studies, we propose a probabilistic approach, called
Gated Latent Beta Allocation (GLBA). This method computes maximum a
posteriori probability (MAP) estimates of each subject’s reliability and regularity
based on a variational expectation-maximization (EM) framework. With this
method, investigators running affective human subject studies can substantially
reduce or eliminate the contamination caused by spammers, hence improve the
quality and usefulness of collected data (Fig. 6.2).

6.1.1 Related Work

Estimating the reliability of subjects is necessary in crowdsourcing-based data
collection because the incentives of participants and the interest of researchers
diverge. There were two levels of assumptions explored for the crowdsourced data,
which we name as the first-order assumption (A1) and the second-order assumption
(A2). Let a task be the provision of emotion responses for one image. Consider a
task or test conducted by a number of participants. Their responses within this
task form a subgroup of data.

A1 There exists a true label of practical interest for each task. The dependencies
between collected labels are mediated by this unobserved true label, of which
noisy labels are otherwise conditionally independent.

A2 The uncertainty model for a subgroup of data does not depend on its actual
specified task. The performance of a participant is consistent across subgroups
of data subject to a single fixed effect.
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Existing approaches that model the complexities of tasks or reliability of partic-
ipants often require one or both of these two assumptions. Under the umbrella of
assumption A1, most probabilistic approaches using the observer models [86–89]
focus on estimating the ground truth from multiple noisy labels. For example,
the modeling of one reliability parameter per subject is an established practice for
estimating the ground truth label [89]. For the case of categorical labels, modeling
of one free parameter per class per subject is a more general approach [86, 90].
Our approach does not model the ground truth of labels, hence it is not viable
to compare our approach with other methods in this regard. Instead, we sidestep
this issue to tackle whether the labels from one subject can agree with labels from
another on a single task. Agreement is judged subject to a preselected criterion.
Such treatment may be more realistic as a means to process sparse ordinal labels
for each task.

Assumption A2 is also widely exploited among methods, often conditioned on A1.
It assumes that all of the tasks have the same level of difficulty [91,92]. Modeling
one difficulty parameter per task has been explored in [93] for categorical labels.
However, in our approach, task difficulty is modeled as a random effect without
subscribing a task-specific parameter. Wisely choosing the modeling complexity
and assumptions should be based on availability and purity of data. As suggested
in [94], more complexity in a model could challenge the statistical estimation subject
to the constraint of real data. Choices with respect to our model attempted to
properly analyze the affective data we obtained.

If the mutual agreement rate between two participants does not depend on the
actual specified task (i.e., when A2 holds), we can essentially convert the resulting
problem to a graph mining problem, where subjects are vertices, agreements are
edges, and the proximity between subjects is modeled by how likely they agree
with each other in a general sense. Probabilistic models for such relational data
can be traced back to early stochastic blockmodels [95, 96], latent space model [97],
and their later extensions with mixed membership [98, 99] and nonparametric
Bayes [100]. We adopt the idea of mixed memberships wherein two particular
modes of memberships are modeled for each subject, one being the reliable mode
and the other the random mode. For the random mode, the behavior is assumed to
be shared across different subjects, whereas the regular behaviors of subjects in the
reliable mode are assumed to be different. Therefore, we can extend this framework
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from graph to multigraph in the interest of crowdsourced data analysis. Specifically,
data are collected as subgroups, each of which is composed of a small agreement
graphs for a single task, such that the covariate within a subgroup is modeled.
Our approach does not rely on A2. Instead, it models the random effects added
to subjects’ performance in each task via the multigraph approach. Assumption
A1 and A2 implies a bipartite graph structure between tasks and subjects. In
contrast, our approach starts from the multigraph structure among subjects that is
coordinated by tasks. Finding the proper and flexible structure that data possess
is crucial for modeling [101].

6.1.2 Our Contributions

To our knowledge, this is the first attempt to connect probabilistic observer models
with probabilistic graphs, and to explore modeling at this complexity from the joint
perspective. We summarize our contributions as follows:

• We developed a probabilistic multigraph model to analyze crowdsourced
data and its approximate variational EM algorithm for estimation. The new
method, accepting the intrinsic variation in subjective responses, does not
assume the existence of ground truth labels, in stark contrast to previous
work having devoted much effort to obtain objective true labels.

• Our method exploits the relational data in the construction and application
of the statistical model. Specifically, instead of the direct labels, the pair-wise
status of agreement between labels given by different subjects is used. As
a result, the multigraph agreement model is naturally applicable to more
flexible types of responses, easily going beyond binary and categorical labels.
Our work serves as a proof of concept for this new relational perspective.

• Our experiments have validated the effectiveness of our approach on real-world
affective data. Because our experimental setup was of a larger scale and
more challenging than settings addressed by existing methods, we believe our
method can fill some gaps for demands in the practical world, for instance,
when gold standards are not available.
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6.2 The Method
In this section, we describe our proposed method. Let us present the mathematical
notations first. A symbol with subscript omitted always indicates an array, e.g.,
x = (. . . , xi, . . .). The arithmetic operations perform over arrays in the element-wise
manner, e.g., x+ y = (. . . , xi + yi, . . .). Random variables are denoted as capital
English letters. The tilde sign indicates the value of parameters in the last iteration
of EM, e.g., θ̃. Given a function fθ, we denote fθ̃ by f̃θ or simply f̃ , if the parameter
θ̃ is implied. Additional notations, as summarized in Table 6.1, will be explained
in more details later.

Symbols Descriptions
Oi subject i
τi rate of subject reliability

αi, βi shape of subject regularity
γ rate of agreement by chance
Θ union of parameters
T

(k)
j whether Oj reliably response
J

(k)
i rate of Oi agreeing with other reliable responses
I

(k)
i,j whether Oi agrees with the responses from Oj

ω
(k)
i (·) cumulative degree of responses agreed by Oi

ψ
(k)
i (·) cumulative degree of responses
r

(k)
j (·) a ratio amplifies or discounts the reliability of Oj

τ̃
(k)
i sufficient statistics of posterior T (k)

i , given Θ̃
α̃

(k)
i , β̃

(k)
i sufficient statistics of posterior J (k)

i , given Θ̃

Table 6.1. Symbols and descriptions of parameters, random variables, and statistics.

6.2.1 Agreement Multigraph

We represent the data as a directed multigraph, which does not assume a particular
type of crowdsourced response. Suppose we have prepared m questions in the
study, the answers can be binary, categorical, ordinal, and multidimensional. Given
a subject pair (i, j) who are asked to look at the k-th question, one designs an
agreement protocol that determines whether the answer from subject i agrees with
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that from subject j. If subject i’s agrees with subject j’s on task k, then we set
I

(k)
i,j = 1. Otherwise, I(k)

i,j = 0.
In our case, we are given ordinal data from multiple channels, we define I(k)

i,j = 1
if (sum of) the percentile difference between two answers ai, aj ∈ {1, . . . , A} satisfies

1
2
∣∣∣P [a(k)

i

]
− P

[
a

(k)
j

]∣∣∣+ 1
2
∣∣∣P [a(k)

i +1
]
− P

[
a

(k)
j +1

]∣∣∣ ≤ δ. (6.1)

The percentile P [·] is calculated from the whole pool of answers for each discrete
value, and δ = 0.2. In the above equation, we measure the percentile difference
between ai and aj as well as that between ai + 1 and aj + 1 in order to reduce the
effect of imposing discrete values on the answers that are by nature continuous.
If the condition does not hold, they disagree and I(k)

i,j = 0. Here we assume that
if two scores for the same image are within a 20% percentile interval, they are
considered to reach an agreement. Compared with setting a threshold on their
absolute difference, such rule adapts to the non-uniformity of score distribution.
Two subjects can agree with each other by chance or they indeed experience similar
emotions in response to the same visual stimulus.

While the choice of the percentile threshold δ is inevitably subjective, the
selection in our experiments was guided by the desire to trade-off the preservation
of the original continuous scale of the scores (favoring small values) and a sufficient
level of error tolerance (favoring large values). This threshold controls the sparsity
level of the multi-graph, and influences the marginal distribution of estimated
parameters. Alternatively, one may assess different values of the threshold and
make a selection based on some other criteria of preference (if exist) applied to the
final results.

6.2.2 Gated Latent Beta Allocation

This subsection describes the basic probabilistic graphical model we used to jointly
model subject reliability, which is independent from the supplied questions, and
regularity. We refrain from carrying out a full Bayesian inference because it is
impractical to end users. Instead, we use the mode(s) of the posterior as point
estimates.

We assume each subject i has a reliability parameter τi ∈ [0, 1] and regularity
parameters αi, βi > 0 characterizing his or her agreement behavior with the
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population, for i = 1, . . . ,m. We also use parameter γ for the rate of agreement
between subjects out of pure chance. Let Θ = ({τi, αi, βi}mi=1, γ) be the set of
parameters. Let Ωk be the a random sub-sample from subjects {1, . . . ,m} who
labeled the stimulus k, where k = 1, . . . , n. We also assume sets Ωk’s are created
independently from each other. For each image k, every subject pair from Ω2

k,
i.e., (i, j) with i 6= j, has a binary indicator I(k)

i,j ∈ {0, 1} coding whether their
opinions agree on the respective stimulus. We assume I(k)

i,j are generated from the
following probabilistic process with two latent variables. The first latent variable
T

(k)
j indicates whether subject Oj is reliable or not. Given that it is binary, a

natural choice of model is the Bernoulli distribution. The second latent variable
J

(k)
i , lying between 0 and 1, measures the extent subject Oi agrees with the other

reliable responses. We use Beta distribution parameterized by αi and βi to model
J

(k)
i because it is a widely used parametric distribution for quantities on interval

[0, 1] and the shape of the distribution is relatively flexible. In a nutshell, T (k)
j is a

latent switch (aka, gate) that controls whether I(k)
i,j can be used for the posterior

inference of the latent variable J (k)
i . Hence, we call our model Gated Latent Beta

Allocation (GLBA). A graphical illustration of the model is shown in Fig. 6.4.
We now present the mathematical formulation of the model. For k = 1, . . . , n,

we generate a set of random variables independently via

T
(k)
j i.i.d. ∼ Bernoulli(τj), j ∈ Ωk , (6.2)

J
(k)
i i.i.d. ∼ Beta(αi, βi), i ∈ Ωk , (6.3)

I
(k)
i,j

∣∣∣T (k)
j , J

(k)
i ∼

 Bernoulli
(
J

(k)
i

)
if T (k)

j = 1

Bernoulli(γ) if T (k)
j = 0

(6.4)

where the last random process holds for any j ∈ Ω¬ik := Ωk − {i} and i ∈ Ωk with
k = 1, . . . , n, and γ is the rate of agreement by chance if one of i, j turns out to be
unreliable. Here {I(k)

i,j } are observed data.
If a spammer is in the subject pool, his or her reliability parameter τi is zero,

though others can still agree with his or her answers by chance at rate γ. On
the other hand, if one is very reliable yet often provides controversial answers, his
reliability τi can be one, while he typically disagrees with others, indicated by his
high irregularity E[J (k)

i ] = αi

αi+βi
≈ 0. We are interested in finding both types of

subjects. However, most of subjects lie in between these two extremes.
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k = 1, . . . , n

j ∈ Ωk
i ∈ Ωk

{τj}mj=1 {αi, βi}mi=1

I
(k)
i,j J

(k)
iT

(k)
j

γ

Figure 6.4. Probabilistic graphical model of the proposed Gated Latent Beta Allocation.

As an interesting note, Eq. (6.4) is asymmetric, meaning that I(k)
i,j 6= I

(k)
j,i is

possible, a scenario that should never occur by definitions of the two quantities. We
propose to achieve symmetry in the final model by using the conditional distribution
of I(k)

i,j and I(k)
j,i given that I(k)

i,j = I
(k)
j,i , and call this model the symmetrized model.

With details omitted, we state that conditioned on T (k)
i , T (k)

j , J (k)
i , and J (k)

j , the
symmetrized model is still a Bernoulli distribution:

I
(k)
i,j ∼ Bernoulli

(
H

((
J

(k)
i

)T (k)
i
γ1−T (k)

i ,
(
J

(k)
j

)T (k)
j
γ1−T (k)

j

))
, (6.5)

where
H(p, q) = pq

pq + (1− p)(1− q) .

We tackle the inference and estimation of the asymmetric model for simplicity.

6.2.3 Variational EM

Variational inference is an optimization based strategy for approximating posterior
distribution in complex distributions [102]. Since the full posterior is highly
intractable, we consider to use variational EM to estimate the parameters Θ =
({τi, αi, βi}mi=1, γ) [103]. The parameter γ is assumed to be pre-selected by the
user and does not need to be estimated. To regularize the other parameters in
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estimation, we use the empirical Bayes approach to choose priors. Assume the
following priors

τi ∼ Beta(τ0, 1− τ0) , (6.6)

αi + βi ∼ Gamma(2, s0) . (6.7)

By empirical Bayes, τ0, s0 are adjusted. For the ease of notations, we define two
auxiliary functions ω(k)

i (·) and ψ(k)
i (·):

ω
(k)
i (x) :=

∑
j∈Ω¬i

k

xjI
(k)
i,j , ψ

(k)
i (x) :=

∑
j∈Ωk

xj . (6.8)

Similarly, we define their siblings

ω̄
(k)
i (x) = ω

(k)
i (1− x), ψ̄

(k)
i (x) = ψ

(k)
i (1− x) . (6.9)

We also define the auxiliary function rj(·) as

r
(k)
j (x) =

∏
i∈Ω¬j

k

(
xi
γ

)I(k)
i,j
(

1− xi
1− γ

)1−I(k)
i,j

. (6.10)

Now we define the full likelihood function:

Lk(Θ;T (k), J (k), I(k)) :=
∏
j∈Ωk

(
(τj)T

(k)
j (1− τj)1−T (k)

j

)

·
∏
i∈Ωk

(
J

(k)
i

)α(k)
i
(
1− J (k)

i

)β(k)
i
φ

(k)
i

B(αi, βi)
, (6.11)

where auxiliary variables simplifying the equations are

α
(k)
i = αi + ω

(k)
i

(
T (k)

)
,

β
(k)
i = βi + ψ

(k)
i − ω

(k)
i

(
T (k)

)
,

φ
(k)
i = γω̄

(k)
i (T (k))(1− γ)ψ̄

(k)
i (T (k))−ω̄(k)

i (T (k)) ,
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and B(·, ·) is the Beta function. Consequently, assume the prior likelihood is LΘ(Θ),
the MAP estimate of Θ is to minimize

L(Θ;T, J, I) := LΘ(Θ)
n∏
k=1

Lk(Θ;T (k), J (k), I(k)) . (6.12)

We solve the estimation using variational EM method with a fixed (τ0, s0) and
varying γ. The idea of variational methods is to approximate the posterior by a
factorizable template, whose probability distribution minimizes its KL divergence
to the true posterior. Once the approximate posterior is solved, it is then used in
the E-step in the EM algorithm as the alternative to the true posterior. The usual
M-step is unchanged. Each time Θ is estimated, we adjust prior (τ0, s0) to match

the mean of the MAP estimates of {τi} and
{
αi + βi

2

}
respective until they are

sufficiently close.
E-step. We use the factorized Q-approximation with variational principle:

pΘ
(
T (k), J (k)

∣∣∣I(k)
)
≈

∏
j∈Ωk

q∗Tj ,Θ

(
T

(k)
j

) ∏
i∈Ωk

q∗Ji,Θ

(
J

(k)
i

)
. (6.13)

• Let

q∗Tj ,Θ

(
T

(k)
j

)
∝ exp

(
EJ,T¬j

[
logLk

(
Θ;T (k), J (k), I(k)

)])
, (6.14)

whose distribution can be written as

Bernoulli
 τjR

(k)
j

τjR
(k)
j + 1− τj

 ,
where logR(k)

j = EJ
[∑

i∈Ω¬j
k

log
(
r

(k)
i (J (k))

)]
. As suggested by Johnson and

Kotz [104], the geometric mean can be numerically approximated by

R
(k)
j ≈

∏
i∈Ω¬j

k

1
α

(k)
i + β

(k)
i

α(k)
i

γ

I
(k)
i,j
 β

(k)
i

1− γ

1−I(k)
i,j

, (6.15)

if both α(k)
i and β(k)

i are sufficiently larger than 1.
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• Let
q∗Ji,Θ(J (k)

i ) ∝ exp
(
ET,J¬i

[
logLk

(
Θ;T (k), J (k), I(k)

)])
, (6.16)

whose distribution is

Beta(αi + ω
(k)
i (τ), βi + ψ

(k)
i (τ)− ω(k)

i (τ)) .

Given parameter Ω̃ = {τ̃i, α̃i, β̃i}i=1, we can compute the approximate posterior
expectation of the log likelihood, which reads

ET,J |Θ̃,I logLk(Θ;T (k), J (k), I(k)) ≈

const .+ logLΘ(Θ) +
∑
j∈Ωk

(
τ̃

(k)
i log τj + (1− τ̃ (k)

i ) log(1− τj)
)

+

∑
i∈Ωk

〈 αi

βi

 , ∇B(α̃(k)
i , β̃

(k)
i )

B(α̃(k)
i , β̃

(k)
i )

〉
−
∑
i∈Ωk

logB(αi, βi) + log γ
∑
i∈Ωk

ω̄
(k)
i

(
τ̃

(k)
i

)
+

log(1− γ)
∑
i∈Ωk

(
ψ̄

(k)
i

(
τ̃

(k)
i

)
− ω̄(k)

i

(
τ̃

(k)
i

))
, (6.17)

where relevant statistics are defined as

α̃
(k)
i = α̃i + ω

(k)
i (τ̃) ,

β̃
(k)
i = β̃i + ψ

(k)
i (τ̃)− ω(k)

i (τ̃) , and (6.18)

τ̃
(k)
i = R̃

(k)
i τ̃i

R̃
(k)
i τ̃i + 1− τ̃i

.

Remark B(·, ·) is the Beta function, and R̃
(k)
i is calculated from approximation

Eq. (6.15)
M-step. Compute the partial derivatives of L with respect to αi and βi: let

∆i be the set of images that are labeled by subject i. We set ∂L/∂αi = 0 and
∂L/∂βi = 0 for each i, which reads

(
αi + βi
s0

− log(αi + βi)
)
·

 1

1

 =
∑
k∈∆i

∇B(α̃(k)
i , β̃

(k)
i )

B(α̃(k)
i , β̃

(k)
i )

− ∇B(αi, βi)
B(αi, βi)

=
∑
k∈∆i

 Ψ(α̃(k)
i )−Ψ(α̃(k)

i + β̃
(k)
i )

Ψ(β̃(k)
i )−Ψ(α̃(k)

i + β̃
(k)
i )

− |∆i| ·

 Ψ(αi)−Ψ(αi + βi)

Ψ(βi)−Ψ(αi + βi)

 ,(6.19)
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where Ψ(x) ∈ [log(x− 1), log x] is the Digamma function. The above two equations
can be practically solved by Newton-Raphson method with a projected modification
(ensuring α, β always are greater than zero).

Compute the derivatives of L with respect to τi and set ∂L/∂τi = 0, which
reads

τi = 1
|∆i|+ 1

τ0 +
∑
k∈∆i

τ̃
(k)
i

 . (6.20)

Compute the derivatives of L w.r.t. γ and set to zero, which reads

γ =
∑
i∈Ωk

ω̄
(k)
i (τ̃ (k)

i )∑
i∈Ωk

ψ̄
(k)
i (τ̃ (k)

i )
. (6.21)

In practice, the update formula for γ needs not to be used if γ is pre-fixed. See
Algorithm 6.1 for details.

6.2.4 The Algorithm

We present our final algorithm to estimate all parameters by knowing the multigraph
data {I(k)

i,j }. Our algorithm is designed based on Eqs. (6.19), (6.20), and (6.21). In
each EM iteration, there are two loops: one for collecting relevant statistics for
each subgraph, and the other for re-computing the parameter estimates for each
subject. Please refer to Algorithm 6.1 for details.
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Algorithm 6.1 Variational EM algorithm of GLBA
Input: A multi-graph {Iki,j ∈ {0, 1}}i,j∈Ωk

, 0 < γ < 0.5
Output: subject parameters Θ = ({(τi, αi, βi)}mi=1, γ)
1: Initialisation : τ0 = 0.5, αi = βi = τi = 1.0, i = 1, . . . ,m
2: repeat
3: for k = 1 to n do
4: compute statistics α̃(k)

i , β̃
(k)
i , τ̃

(k)
i by Eq. (6.18);

5: end for
6: for i = 1 to m do
7: solve (αi, βi) from Eq. (6.19) (Newton-Raphson);
8: compute τi by Eq. (6.20);
9: end for

10: (optional) update γ from Eq. (6.21);
11: until {(τi, αi, βi)}mi=1 are all converged. return Θ

6.3 Experiments

6.3.1 Data Sets

We studied a crowdsourced affective data set acquired from the Amazon Mechanical
Turk (AMT) platform [85]. The affective data set is a collection of image stimuli
and their affective labels including valence, arousal, dominance and likeness (degree
of appreciation). Labels for each image are ordinal: {1, ... , 9} for the first three
dimensions, and {1, ..., 7} for the likeness dimension. The study setup and collected
data statistics have been detailed in [85], which we describe briefly here for the
sake of completeness.

At the beginning of a session, the AMT study host provides the subject brief
training on the concepts of affective dimensions. Here are descriptions used for
valence, arousal, dominance, and likeness.

• Valence: degree of feeling happy vs. unhappy

• Arousal: degree of feeling excited vs. calm

• Dominance: degree of feeling submissive vs. dominant
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• Likeness: how much you like or dislike the image

The questions presented to the subject for each image are given below in exact
wording.

• Slide the solid bubble along each of the bars associated with the 3 scales
(Valence, Arousal, and Dominance) in order to indicate how you ACTUALLY
FELT WHILE YOU OBSERVED THE IMAGE.

• How did you like this image? (Like extremely, Like very much, Like slightly,
Neither like nor dislike, Dislike slightly, Dislike very much, Dislike extremely)

Each AMT subject is asked to finish a set of labeling tasks, and each task is to
provide affective labels on a single image from a prepared set, called the EmoSet.
This set contains around 40,000 images crawled from the Internet using affective
keywords. Each task is divided into two stages. First, the subject views the image;
and second, he/she provides ratings in the emotion dimensions through a Web
interface. Subjects usually spend three to ten seconds to view each image, and five
to twenty seconds to label it. The system records the time durations respectively
for the two stages of each task and calculates the average cost (at a rate of about
1.4 US Dollars per hour). Around 4,000 subjects were recruited in total. For the
experiments below, we retained image stimuli that have received affective labels
from at least four subjects. Under this screening, the AMT data have 47,688
responses from 2,039 subjects on 11,038 images. Here, one response refers to the
labeling of one image by one subject conducted in one task.

Because humans can naturally feel differently from each other in their affective
experiences, there was no gold standard criterion to identify spammers. Such a
human emotion data set is difficult to analyze and the quality of data is hard to
assess. Among several emotion dimensions, we found that participants were more
consistent in the valence dimension. As a reminder, valence is the rated degree of
positivity of emotion evoked by looking at an image. We call the variance of the
ratings from different subjects on the same image the within-task variance, while
the variance of the ratings from all the subjects on all the images the cross-task
variance. For valence and likeness, the within-task variance accounts for about
70% of the cross-task variance, much smaller than for the other two dimensions.
Therefore, the remaining experiments were focused on evaluating the regularity of
image valences in the data.

116



6.3.2 Baselines for Comparison

We discuss below several baseline methods or models with which we compare our
method.
Dawid and Skene [86]. Our method falls into the general category of consensus
methods in the literature of statistics and machine learning, where the spammer fil-
tering decision is made completely based on the labels provided by observers. Those
consensus methods have been developed along the line of Dawid and Skene [86],
and they mainly deal with categorical labels by modeling each observer using a
designated confusion matrix. More recent developments of the observer models
have been discussed in [94], where a benchmark has shown that the Dawid-Skene
method is still quite competitive in unsupervised settings according to a number
of real-world data sets for which ground-truth labels are believed to exist albeit
unknown. However, this method is not directly applicable to our scenario. To enable
comparison with this baseline method, we first convert each affective dimension
into a categorical label by thresholding. We create three categories: high, neural,
and low, each covering a continuous range of values on the scale. For example, high
valence category implies a score greater than a neural score (i.e., 5) by more than a
threshold (e.g., 0.5). Such a thresholding approach has been adopted in developing
affective categorization systems, e.g. [83, 84].
Time duration. In the practice of data collection, the host filtered spammers by
a simple criterion—to declare a subject spammer if he spends substantially less
time on every task. The labels provided by the identified spammers were then
excluded from the data set for subsequent use, and the host also declined to pay
for the task. However, some subjects who were declined to be paid wrote emails to
the host arguing for their cases. Under this spirit, in our experiments, we form a
baseline method that uses the average time duration of each subject to red-flag a
spammer.
Filtering based on gold standard examples. A widely used spammer detec-
tion approach in crowdsourcing is to create a small set with known ground truth
labels and use it to spot anyone who gives incorrect labels. However, such a policy
was not implemented in our data collection process because as we argued earlier,
there is simply no ground truth for the emotion responses to an image in a general
sense. On the other hand, just for the sake of comparison, it seems reasonable to
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find a subset of images that evoke such extreme emotions that ground truth labels
can be accepted. This subset will then serve the role of gold standard examples.
We used our method to retrieve a subset of images which evoke extreme emotions
with high confidence (see Section 6.3.7 for confidence score and emotion score
calculation). For the valence dimension, we were able to identify at most 101
images with valence score ≥ 8 (on the scale of 1 . . . 9) with over 90% confidence and
37 images with valence score ≤ 2 with over 90% confidence. We also looked at those
images one by one (as provided in the supplementary materials) and believe that
within a reasonable tolerance of doubt those images should evoke clear emotions in
the valence dimension. Unfortunately, only a small fraction of subjects in our pool
have labeled at least one image from this "gold standard" subset. Among this small
group, their disparity from the gold standard enables us to find three susceptible
spammers. To see whether these three susceptible spammers can also be detected
by our method, we find that their reliability scores τ ∈ [0, 1] are 0.11, 0.22, 0.35
respectively. In Fig. 6.9, we plot the distribution of τ of the entire subject pool.
These three scores are clearly on the low end with respect to the scores of the other
subjects. Thus the three spammers are also assessed to be highly susceptible by
our model.

In summary, while we were able to compare our method with the first two
baselines quantitatively, with results to be presented shortly, comparison with the
third baseline is limited due to the way the AMT data were collected [85].

6.3.3 Model Setup

Since our hypotheses included a random agreement ratio γ that is pre-selected,
we adjusted the parameter γ from 0.3 to 0.48 to see empirically how it affects the
result in practice.

Fig. 6.5 depicts how the reliability parameter τ varies with γ for different workers
in our data set. Results are shown for the top 15 users who provided the most
numbers of ratings. Generally speaking, a higher γ corresponds to a higher chance
of agreement between workers purely out of random. From the figure, we can see
that a worker providing more ratings is not necessarily more reliable. It is quite
possible that some workers took advantage of the AMT study to earn monetary
compensation without paying enough attention to the actual questions.
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Figure 6.5. Left: Reliability scores versus γ ∈ [0.3, 0.48] for the top 15 users who
provided the most numbers of ratings. Right: Visualization of the estimated regularity
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Figure 6.6. Normalized histogram of basic statistics including total number of tasks
completed and average time duration spent at each of the two stages per task.

In Table 6.2, we demonstrate the valence, arousal, and dominance labels for two
categories of subjects. On the top, the first category contains susceptible spammers
with low estimated reliability parameter τ ; and on the bottom, the second category
contains highly reliable subjects with high values of τ . Each subject takes one row.
For the convenience of visualization, we represent the three-dimensional emotion
scores given to any image by a particular color whose RGB values are mapped from
the values in the three dimensions respectively. The emotion labels for every image
by one subject are then condensed into one color bar. The labels provided by each
subject for all his images are then shown as a palette in one row. For clarity, the
color bars are sorted in lexicographic order of their RGB values. One can clearly
see that those labels given by the subjects from these two categories exhibit quite
different patterns. The palettes of the susceptible spammers are more extreme in
terms of saturation or brightness. The abnormality of label distributions of the first
category naturally originates from the fact that spammers intended to label the
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τi αi βi reported emotions (sorted)
0.19 1.17 2.43
0.08 0.75 2.20
0.08 1.16 2.50
0.09 0.67 1.70
0.03 0.94 1.90
0.17 0.72 1.47
0.06 1.14 2.50
0.17 0.86 1.79
0.04 1.01 2.63
0.03 1.08 2.84
0.92 2.29 1.49
0.94 2.55 1.98
0.95 2.61 1.68
0.92 2.40 1.66
0.91 2.21 1.40
0.92 2.45 1.97
0.93 2.38 1.69
0.93 1.76 1.40
0.91 2.44 1.86
0.92 2.30 1.85
0.92 2.45 1.82
0.91 1.64 1.29
0.90 1.68 1.12
0.91 2.72 2.22

Table 6.2. Oracles in the AMT data set. Upper: malicious oracles whose αi/βi is among
the lowest 30, meanwhile |∆i| is greater than 10. Lower: reliable oracles whose τi is
among the top 30, meanwhile αi/βi > 1.2. Their reported emotions are visualized by
RGB colors. The estimates of Θ is based on the valence dimension.

data by exerting the minimal efforts and without paying attention to the questions.
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6.3.4 Basic Statistics of Manually Annotated Spammers

For each subject in the pool, by observing all his or her labels in different emotion
dimensions, there was a reasonable chance of spotting abnormality solely by visualiz-
ing the distribution. If one were a spammer, it often happened that his or her labels
were highly correlated, skewed or deviated in an extreme manner from a neural
emotion along different dimensions. In such cases, it was possible to manually
exclude his or her responses from the data due to his or her high susceptibility. We
applied this same practice to identifying highly susceptible subjects from the pool.
We found about 200 susceptible participants.

We studied several basic statistics of this subset in comparison with the whole
population: total number of tasks completed, average time duration spent on image
viewing and survey per task. The histograms of these quantities are plotted in
Fig. 6.6. One can see that the annotated spammers did not necessarily spend
less time or finish fewer tasks than the others, and the time duration has shown
only marginal sensitivity to those annotated spammers (See Fig. 6.6). The figures
demonstrate that those statistics are not effective criteria for spammer filtering.

We will use this subset of susceptible subjects as a "pseudo-gold standard" set
for quantitative comparisons of our method and the baselines in the subsequent
studies. As explained previously in 6.3.2, other choices of constructing a gold
standard set either conflict the high variation nature of emotion responses or yield
only a tiny (of size three) set of spammers.

6.3.5 Top-K Precision Performance in Retrieving the Real Spam-
mers

We conducted experiments on each affective dimension, and evaluated whether the
subjects with the lowest estimated τ were supposed to be real spammers according
to the "pseudo-gold standard" subset constructed in Section 6.3.4. Since there was
no gold standard to correctly classify whether one subject was truly a spammer or
not, we have been agnostic here. Based on that subset, we were able to partially
evaluate the top-K precision in retrieving the real spammers, especially the most
susceptible ones.

Specifically, we computed the reliability parameter τ for each subject and chose
the K subjects with the lowest values as the most susceptible spammers. Because
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Figure 6.7. The agnostic Precision-Recall curve (by valence) based on manually anno-
tated spammers. The top 20, top 40 and top 60 precision is 100%, 95%, 78% respectively
(black line). It is expected that precision drops quickly with increasing recalls, because
the manually annotation process can only identify a special type of spammers, while other
types of spammers can be identified by the algorithm. The PR curves at γ = 0.3, 0.37, 0.44
are also plotted. Two baselines are compared: the Dawid and Skene (DS) approach and
the time duration based approach.

τ depends on the random agreement rate γ, we computed τ ’s using 10 values of γ
evenly spaced out over interval [0.3, 0.48]. The average value of τ was then used
for ranking. The Precision Recall Curves are shown in Fig. 6.7. Our method
achieves high top-K precision by retrieving the most susceptible subjects from the
pool according to the average τ . In particular, the top-20 precision is 100%, the
top-40 precision is 95%, and the top-60 precision is 78%. Clearly, our algorithm
has yielded results well aligned with the human judgment on the most susceptible
ones. In Fig. 6.7, we also plot Precision Recall Curves by fixing γ to 0.3, 0.37, 0.44
and using the corresponding τ . The result at γ = 0.37 is better than the other
two across recalls, indicating that a proper level of the random agreement rate can
be important for achieving the best performance. The two baseline methods are
clearly not competitive in this evaluation. The Dawin-Skene method [86], widely
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Figure 6.8. The agnostic Precision-Recall curve based on manually annotated spammers
computed from different affective dimensions: valence, arousal, dominance, and likeness.

used in processing crowdsourced data with objective ground truth labels, drops
quickly to a remarkably low precision even at a low recall. The time duration
method, used in the practice of AMT host, is better than the Dawin-Skene method,
yet substantially worse than the performance of our method.

We also tested this same method of identifying spammers using affective dimen-
sions other than valence. As shown in Fig. 6.8, the two most discerning dimensions
were valence and arousal. It is not surprising that people can reach relatively
higher consensus when rating images by these two dimensions than by dominance
or likeness. Dominance is much more likely to draw on evidence from context
and social situation in most circumstances and hence less likely to have its nature
determined to a larger extent by the stimulus itself.

6.3.6 Recall Performance in Retrieving the Simulated Spam-
mers

The evaluation of top-K precision was limited in two respects: (1) the susceptible
subjects were identified because we could clearly observe their abnormality in terms
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of the multivariate distribution of provided labels. If the participant labeled the
data by acting exactly the same as the distribution of the population, we could
not manually identify him/her using the aforementioned methodology. (2) We still
need to determine if one is a spammer, how likely we are to spot him/her.

In this study, we simulated several highly “intelligent” spammers, who labeled
the data by exactly following the label distribution of the whole population. Every
time, we generated 10 spammers, who randomly labeled 50 images. The labels of
simulated spammers were not overlapping. We mixed those labels of the simulated
spammers with the existing data set, and then conducted our method again to
determine how accurate our approach was with respect to finding the simulated
spammers. We repeated this process 10 times in order to estimate the τ distribution
of the simulated spammers. Results are reported Fig. 6.9. We drew the histogram
of the estimated reliability of all real workers and compared them to the estimated
reliability of simulated spammers (in the table included in Fig. 6.9). We noted that
more than half of the simulated spammers were identified as highly susceptible
based on the τ estimation (≤ 0.2), and none of them were supposed to have a high
reliability score (≥ 0.6). This result validates that our method is robust enough
to spot the “intelligent” spammers, even if they disguise themselves as random
labelers within a population.

6.3.7 Qualitative Comparison Based on Controversial Examples

To re-rank the emotion dimensions and likenesses of stimuli with the reliability of
the subject accounted for, we adopted the following formula to find the stimuli with
“reliably” highest ratings. Assume each rating ai ∈ [0, 1]. We define the following
to replace the usual average:

bk :=
∑
i∈Ωk

τia
(k)
i∑

i∈Ωk
τi︸ ︷︷ ︸

est. score

·

1−
∏
i∈Ωk

(1− τi)


︸ ︷︷ ︸
confidence

, (6.22)

where
(
1−∏i∈Ωk

(1− τi)
)
∈ [0, 1] is the cumulative confidence score for image k.

This adjusted rating bk not only allows more reliable subjects to play a bigger role
via the weighted average (the first term of the product) but also modulates the
weighted average by the cumulative confidence score for the image. Similarly, in
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Figure 6.9. The histogram distribution of estimated worker reliabilities τ and statistics
of simulated spammers based on 10 repeated runs, each with 10 spammers injected.

order to find those with “reliably” lowest ratings, we replace a(k)
i with (1− a(k)

i ) in
the above formula and then still seek for the images with the highest bk’s.

If bk is higher than a neutral level, then the emotional response to the image is
considered high. Fig. 6.10 shows the histogram of image confidence scores estimated
by our method. More than 85% of images had acquired a sufficient number of
quality labels. To obtain a qualitative sense of the usefulness of the reliability
parameter τ , we compared our approach with the simple average-and-rank scheme
by examining controversial image examples according to each emotion dimension.
Here, being controversial means the assessment of the average emotion response
for an image differs significantly between the methods. Despite the variability of
human nature, the majority of the population were quite likely to reach consensus
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Figure 6.10. The histogram of image confidences estimated based on our method.
About 85% of images have a confidence scores higher than 90%.

for a portion of the stimuli. Therefore, this investigation is meaningful. In Fig. 6.2
and Fig. 6.3, we show example image stimuli that were recognized to clearly deviate
from neutral emotions by one method but not agreed upon by the other. We
skipped stimuli images that were fear inducing, visually annoying or improper.
Interested readers can see the complete results in the supplementary material.

6.3.8 Cost/Overhead Analysis

There is an inevitable trade-off between the quality of the labels and the average
cost of acquiring them when screening is applied based on reliability. If we set a
higher standard for reliability, the quality of the labels retained tends to improve
but we are left with fewer labels to use. It is interesting to visualize the trade-off
quantitatively. Let us define overhead numerically as the number of labels removed
from the data set when quality control is imposed; and let the threshold on either
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subject reliability or image confidence used to filter labels be the index for label
quality. We obtained what we call overhead curve in Fig. 6.11. On the left plot,
the result is based on filtering subjects with reliability scores below a threshold (all
labels given by such subjects are excluded); on the right, it is based on filtering
images with confidence scores below a threshold. As shown by the plots, if either
the labels from subjects with reliability scores below 0.3 are discarded or those
for images with confidence scores below 90% are discarded, roughly 10,000 out
of 47,688 labels are deemed unusable. At an even higher standard, e.g., subject
reliability ≥ .5 or image confidence level ≥ 95%, around half of the labels will be
excluded from the data set. Although this means the average per label cost is
doubled at the stringent quality standard, we believe the screening is worthwhile
in comparison with analysis misled by wrong data. In a large-scale crowdsource
environment, it is simply impractical to expect all the subjects to be fully serious.
This contrasts starkly with a well-controlled lab environment for data collection.
In a sense, post-collection analysis of data to ensure quality is unavoidable. It is
indeed a matter of which analysis should be applied.
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Figure 6.11. Left: Overhead curve based on subject filtering; Right: overhead curve
based on image filtering. The overhead is quantified by the number of labels discarded
after filtering.
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6.4 Discussions
Underlying Principles: Our approach to assess the reliability of crowdsourced
affective data deviates fundamentally from the standard approaches much concerned
with hunting for "ground truth" emotion stimulated by an image. An individual’s
emotion response is expected to be naturally different because it depends on
subjective opinions rooted in the individual’s lifetime exposure to images and
concepts, a topic having been pursued long in the literature of social psychology.
The new principle we adopted here focuses on the relational knowledge about the
ratings of the subjects. Our analysis steps away from the use of "ground truth" by
recasting the data as relational quantities.

As pointed out by a reviewer, such a relational perspective may be intrinsic
in human cognition, going beyond our specific problem here. For instance, the
same spirit of exploiting relationships has already appeared in studies to under-
stand linguistic learning. Gentner [105,106] proposed that one should understand
linguistic learning in a relational way. Instead of assuming there are well-formed
abstract language concepts to grasp, the human’s cognitive ability often starts from
analogical processing based on examples of a concept, and then utilizes the symbolic
systems (languages) to reinforce and guide the learning, and to facilitate memory
of the acquired concepts. The relationships among the examples and the abstract
concept play a role in learning hand in hand, refining recursively the understanding
of each other. The whole process is an interlocked and repeated improvement of one
side assisted by the other. In a similar fashion, our system improves its assessment
about which images evoke highly consensus emotion responses and which subjects
are reliable. At the beginning, the lack of either kind of information obscures the
truth about the other. Or equivalently, knowing either makes the understanding
of the other easy. This is a chicken-and-egg situation. Like the proposed way of
learning languages, our system pulls out of the dilemma by recursively enhancing
the understanding of one side conditioned on what has been known about the other.

Results: We found that the crowdsourced affective data we examined are particu-
larly challenging for the conventional school of observer models, developed along
the line of Dawid and Skene [86]. We identified two major reasons. First, each
image in our data set has a much smaller number of observers, compared with what
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are typically studied in the benchmarks [94]. In our data set, most images were
only labeled by 4 to 8 subjects, while many existing benchmark data sets have tens
of subjects per task. Second, a more profound reason is that most images do not
have a ground truth affective label at the first place. This can render ineffective
many statistical methods which model the user-task confusion matrix and hence
count on the existence of "true" labels and the fixed characteristics of uncertainty
in responses (assumptions A1 and A2).

Our experiments demonstrate that valence and arousal are the two most effec-
tive dimensions that can be used to analyze the reliability of subjects. Although
subjects may not reach a consensus at local scales (say, an individual task) because
the emotions are inherently subjective, consensus at a global scale can still be well
justified.

Usage Scenarios: We would like to articulate on the scenarios under which our
method or other traditional approaches (e.g., those described in Section 6.3.2) are
more suitable.

First, our method is not meant to replace traditional approaches that add
control factors at the design stage of the experiments, for example, recording task
completion time, and testing subjects with examples annotated with gold standard
labels. Those methods are effective at identifying extremely careless subjects. But
we argue that the reliability of a subject is often not a matter of yes or no, but
can take a continum of intermediate levels. Moreover, consensus models such as
Dawid-Skene methods require that each task is assigned to multiple annotators.

Second, our method can be integrated with other approaches so as to collect data
most efficiently. Traditional heuristic approaches require the host to come up with
a number of design questions or procedures effective for screening spammers before
executing the experiments, which can be a big challenge especially for affective
data. In contrast, the consensus models support post analyses of collected data
and have no special requirement for the experimental designs. This suggests we
may use a consensus model to carry out a pilot study which then informs us how
to best design the data collection procedure.

Third, as a new method in the family of consensus models, our approach is
unique in terms of its fundamental assumptions, and hence should be utilized
in quite different scenarios than the other models. Methods based on modeling
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confusion matrix are more suitable for aggregating binary and categorical labels,
while the agreement-based methods (ours included) are more suitable for continuous
and multi-dimensional labels (or more complicated structures) that normally have
no ground truth. The former are often evaluated quantitatively by how accurately
they estimate the true labels [94], while the latter are evaluated directly by how
effectively they identify unreliable annotators, a perspective barely touched in the
existing literature.

Limitations and Future Work: Despite the fact that we did not assume A1 or
A2 and approached the problem of assessing the quality of crowdsourced data form
an unusual angle, there are interesting questions left about the statistical model we
employed.

• Some choices of parameters in the model are quite heuristic. The usage
of our model requires pre-set values for certain parameters, e.g., γ, but we
have not found theoretically pinned-down guidelines on how to choose those
parameters. As a result, it is always subjective to some extent to declare a
subject spammer. The ranking of reliability of subjects seems easier to accept.
Where the cutoff should be will involve some manual checking on the result or
will be determined by some other factors such as the desired cost of acquiring
a certain amount of data.

• Although we have made great efforts to design various measures to evaluate
our method, struggling to get around the issue of lacking an objective gold
standard (its very existence has been questioned), these measures have limita-
tions in one way or the other, as discussed in Section 6.3. We feel that due to
the subjective nature of emotion responses to images, there is no simple and
quick solution to this. The ultimate test of the method has to come from its
usage in practice and a relatively long-term evaluation from the real-world.

• The effects of subgroup consistency, though varied from task to task, were
random effects. We constructed the model this way to stretch its applicability
because the number of responses collected per task in our empirical data
was often small. Some related approaches (e.g. [93]) propose to estimate a
difficulty/consistency parameter for each task, but often require a relatively
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large number of annotators per task. Which kind of probabilistic assumptions
is more accurate or works better calls for future exploration.

• Only one “major” reliable mode was assumed at one time, and hereafter
only the regularities conditioned on this mode are estimated. In another
word, all the reliable users are assumed to behave consistently. One may ask
whether there exist subgroups of reliable users who behave consistently within
a group but differ across groups for reasons such as different demographic
backgrounds. In our current model, if such “minor” reliable mode exists in a
population, these subjects may be absorbed into the spammer group. Our
model implicitly assumes that diversity in demography or in other aspects
does not cause influential differences in emotion responses. Because of this,
our method in dealing with culturally sensitive data is not well justified.

Experimentally our method is only evaluated on one particular large data set [85].
Evaluations on other affective data sets (when publicly available) are of interest.

We have focused on the post analysis of collected data. As a future direction, it
is of interest to examine the capacity of our approach to reduce time and cost in
the practice of crowdsourcing using A/B test. We hereby briefly discuss an online
heuristic strategy to dynamically allocate tasks to more reliable subjects. Recall
that our model has two sets of parameters: parameter τi indicating the reliability
of subjects and parameter αi; βi capturing the regularity. We can use the variance
of distribution Beta(αi, βi) to determine how confident we are with the estimation
of τi. For subject i, if the variance of Beta(αi, βi) is smaller than a threshold while
τi is below a certain percentile, this subject is considered confidently unreliable and
he/she may be excluded from the future subject pool.

In this chapter, we developed a probabilistic model, namely Gated Latent
Beta Allocation, to analyze the off-line consensus for crowdsourced affective data.
Compared to the usual crowdsourcing settings, where reliable workers are supposed
to have consensus, the consensus analysis of affective data is more challenging
because of the innate variation in emotion responses even out of true feelings. To
overcome this difficulty, our model estimates the reliability of subjects by exploiting
the agreement relationships between their ratings at a global scale. The experiments
show that the relational data based on the valence of human responses are more
effective than the other emotion dimensions for identifying spammer subjects. By
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evaluating and comparing the new method with some standard methods in multiple
ways, we find that the results have demonstrated clear advantages and the system
seems ready for use in practice.
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Appendix A|
Channel Pruning of Convolution
Layers

A.1 Introduction
Not all computations in a deep neural network are of equal importance. In a typical
deep learning pipeline, an expert crafts a neural architecture, which is trained using
a prepared dataset. The success of training a deep model often requires trial and
error, and such loop usually has little control on prioritizing the computations
happening in the neural network. Recently researchers started to develop model-
simplification methods for convolutional neural networks (CNNs), bearing in mind
that some computations are indeed non-critical or redundant and hence can be
safely removed from a trained model without substantially degrading the model’s
performance. Such methods not only accelerate computational efficiency but also
possibly alleviate the model’s overfitting effects.

Discovering which subsets of the computations of a trained CNN are more
reasonable to prune, however, is nontrivial. Existing methods can be categorized
from either the learning perspective or from the computational perspective. From
the learning perspective, some methods use a data-independent approach where the
training data does not assist in determining which part of a trained CNN should be
pruned, e.g. [107] and [108], while others use a data-dependent approach through

The work presented in this section has been published in the form of a research paper: Jianbo
Ye, Xin Lu, Zhe Lin, James Z. Wang, “Rethinking the Smaller-Norm-Less-Informative Assumption
in Channel Pruning of Convolution Layers,” Proceedings of International Conference on Learning
Representations, April 2017.
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typically a joint optimization in generating pruning decisions, e.g., [109] and [110].
From the computational perspective, while most approaches focus on setting the
dense weights of convolutions or linear maps to be structured sparse, we propose
here a method adopting a new conception to achieve in effect the same goal.

Instead of regarding the computations of a CNN as a collection of separate
computations sitting at different layers, we view it as a network flow that delivers
information from the input to the output through different channels across different
layers. We believe saving computations of a CNN is not only about reducing what
are calculated in an individual layer, but perhaps more importantly also about
understanding how each channel is contributing to the entire information flow in
the underlying passing graph as well as removing channels that are less responsible
to such process. Inspired by this new conception, we propose to design a “gate” at
each channel of a CNN, controlling whether its received information is actually sent
out to other channels after processing. If a channel “gate” closes, its output will
always be a constant. In fact, each designed “gate” will have a prior intention to
close, unless it has a “strong” duty in sending some of its received information from
the input to subsequent layers. We find that implementing this idea in pruning
CNNs is unsophisticated, as will be detailed in Sec A.4.

Our method neither introduces any extra parameters to the existing CNN, nor
changes its computation graph. In fact, it only introduces marginal overheads to
existing gradient training of CNNs. It also possess an attractive feature that one can
successively build multiple compact models with different inference performances
in a single round of resource-intensive training (as in our experiments). This eases
the process to choose a balanced model to deploy in production. Probably, the only
applicability constraint of our method is that all convolutional layers and fully-
connected layer (except the last layer) in the CNN should be batch normalized [111].
Given batch normalization has becomes a widely adopted ingredient in designing
state-of-the-art deep learning models, and many successful CNN models are using
it, we believe our approach has a wide scope of potential impacts.1

In this paper, we start from rethinking a basic assumption widely explored in
existing channel pruning work. We point out several issues and gaps in realizing

1For convolution layer which is not originally trained with batch normalization, one can still
convert it into a “near equivalent” convolution layer with batch normalization by removing the
bias term b and properly setting γ =

√
σ + ε, β = b+ µ, where σ and µ are estimated from the

outputs of the convolution across all training samples.
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this assumption successfully. Then, we propose our alternative approach, which
works around several numerical difficulties. Finally, we experiment our method
across different benchmarks and validate its usefulness and strengths.

A.2 Related Work
Reducing the size of neural network for speeding up its computational performance
at inference time has been a long-studied topic in the communities of neural network
and deep learning. Pioneer works include Optimal Brain Damage [112] and Optimal
Brain Surgeon [113]. More recent developments focused on either reducing the
structural complexity of a provided network or training a compact or simplified
network from scratch. Our work can be categorized into the former, thus the
literature review below revolves around reducing the structural complexity.

To reduce the structural complexity of deep learning models, previous work
have largely focused on sparsifying the weights of convolutional kernels or the
feature maps across multiple layers in a network [109, 110]. Some recent efforts
proposed to impose structured sparsity on those vector components motivated
from the implementation perspective on specialized hardware [114–117]. Yet as
argued by [118], regularization-based pruning techniques require per layer sensitivity
analysis which adds extra computations. Their method relies on global rescaling
of criteria for all layers and does not require sensitivity estimation, a beneficial
feature that our approach also has. To our knowledge, it is also unclear how widely
useful those works are in deep learning. In Section A.3, we discuss in details the
potential issues in regularization-based pruning techniques potentially hurting them
being widely applicable, especially for those that regularize high-dimensional tensor
parameters or use magnitude-based pruning methods. Our approach works around
the mentioned issues by constraining the anticipated pruning operations only to
batch-normalized convolutional layers. Instead of posing structured sparsity on
kernels or feature maps, we enforce sparsity on the scaling parameter γ in batch
normalization operator. This blocks the sample-wise information passing through
part of the channels in convolution layer, and in effect implies one can safely remove
those channels.

A recent work by [119] used a similar technique as ours to remove unimportant
residual modules in ResNet by introducing extra scaling factors to the original
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network. However, some optimization subtleties as to be pointed out in our paper
were not well explained. Another recent work called Network-Slimming [120] also
aims to sparsify the scaling parameters of batch normalization. But instead of
using off-the-shelf gradient learning like theirs, we propose a new algorithmic
approach based on ISTA and rescaling trick, improving robustness and speed of
the undergoing optimization. In particular, the work of [120] was able to prune
VGG-A model on ImageNet. It is unclear how their work would deal with the γ-W
rescaling effect and whether their approach can be adopted to large pre-trained
models, such as ResNets and Inceptions. We experimented with the pre-trained
ResNet-101 and compared to most recent work that were shown to work well with
large CNNs. We also experimented with an image segmentation model which has
an inception-like module (pre-trained on ImageNet) to locate foreground objects.

A.3 Rethinking the Smaller-Norm-Less-Informative As-
sumption

In most regularized linear regressions, a large-norm coefficient is often a strong
indicator of a highly informative feature. This has been widely perceived in
statistics and machine learning communities. Removing features which have a
small coefficient does not substantially affect the regression errors. Therefore, it
has been an established practice to use tractable norm to regularize the parameters
in optimizing a model and pick the important ones by comparing their norms after
training. However, this assumption is not unconditional. By using Lasso or ridge
regression to select important predictors in linear models, one always has to first
normalize each predictor variable. Otherwise, the result might not be explanatory.
For example, ridge regression penalizes more the predictors which has low variance,
and Lasso regression enforces sparsity of coefficients which are already small in OLS.
Such normalization condition for the right use of regularization is often unsatisfied
for nonconvex learning. For example, one has to carefully consider two issues
outlined below. We provides these two cases to exemplify how regularization could
fail or be of limited usage. There definitely exist ways to avoid the described
failures.
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Model Reparameterization. In the first case, we show that it is not easy to
have fine-grained control of the weights’ norms across different layers. One has to
either choose a uniform penalty in all layers or struggle with the reparameterization
patterns. Consider to find a deep linear (convolutional) network subject to a least
square with Lasso: for λ > 0,

min
{Wi}2n

i=1

E(x,y)∼D‖W2n ∗ . . . ∗W2 ∗W1 ∗ x− y‖2 + λ
n∑
i=1
‖W2i‖1 .

The above formulation is not a well-defined problem because for any parameter set
{Wi}2n

i=1, one can always find another parameter set {W ′
i}2n
i=1 such that it achieves

a smaller total loss while keeping the corresponding l0 norm unchanged by actually
setting

W ′
i = αWi, i = 1, 3, . . . , 2n− 1 and W ′

i = Wi/α, i = 2, 4, . . . , 2n ,

where α > 1. In another word, for any ε > 0, one can always find a parameter
set {Wi}2n

i=1 (which is usually non-sparse) that minimizes the first least square loss
while having its second Lasso term less than ε.

We note that gradient-based learning is highly inefficient in exploring such model
reparameterization patterns. In fact, there are some recent discussions around
this [121]. If one adopts a pre-trained model, and augments its original objective
with a new norm-based parameter regularization, the new gradient updates may
just increase rapidly or it may take a very long time for the variables traveling
along the model’s reparameterization trajectory. This highlights a theoretical
gap questioning existing sparsity-inducing formulation and actual computational
algorithms whether they can achieve widely satisfactory parameter sparsification
for deep learning models.

Transform Invariance. In the second case, we show that batch normalization
is not compatible with weight regularization. The example is penalizing l1- or l2-
norms of filters in convolution layer which is then followed by a batch normalization:
at the l-th layer, we let

xl+1 = max{γ · BNµ,σ,ε(W l ∗ xl) + β, 0},

where γ and β are vectors whose length is the number of channels. Likewise, one
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can clearly see that any uniform scaling of W l which changes its l1- and l2-norms
would have no effects on the output xl+1. Alternatively speaking, if one is interested
in minimizing the weight norms of multiple layers together, it becomes unclear
how to choose proper penalty for each layer. Theoretically, there always exists an
optimizer that can change the weight to one with infinitesimal magnitude without
hurting any inference performance. As pointed by one of the reviewers, one can
tentatively avoid this issue by projecting the weights to the surface of unit ball.
Then one has to deal with a non-convex feasible set of parameters, causing extra
difficulties in developing optimization for data-dependent pruning methods. It is
also worth noting that some existing work used such strategy in a layer-by-layer
greedy way [107,108].

Based on this discussion, many existing works which claim to use Lasso, group
Lasso (e.g. [110, 114]), or thresholding (e.g. [118]) to enforce parameter sparsity
have some theoretical gaps to bridge. In fact, many heuristic algorithms in neural
net pruning actually do not naturally generate a sparse parameterized solution.
More often, thresholding is used to directly set certain subset of the parameters in
the network to zeros, which can be problematic. The reason is in essence around
two questions. First, by setting parameters less than a threshold to zeros, will the
functionality of neural net be preserved approximately with certain guarantees? If
yes, then under what conditions? Second, how should one set those thresholds for
weights across different layers? Not every layer contributes equally in a neural net.
It is expected that some layers act critically for the performance but only use a
small computation and memory budget, while some other layers help marginally
for the performance but consume a lot resources. It is naturally more desirable to
prune calculations in the latter kind of layers than the former.

In contrast with these existing approaches, we focus on enforcing sparsity of a
tiny set of parameters in CNN — scale parameter γs in all batch normalization.
Not only placing sparse constraints on γ is simpler and easier to monitor, but more
importantly, we have two strong reasons:

1. Every γ always multiplies a normalized random variable, thus the channel
importance becomes comparable across different layers by measuring the
magnitude values of γ;
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2. The reparameterization effect across different layers is avoided if its subsequent
convolution layer is also batch-normalized. In other words, the impacts from
the scale changes of γ parameter are independent across different layers.

Nevertheless, our current work still falls short of a strong theoretical guarantee.
We believe by working with normalized feature inputs and their regularized coeffi-
cients together, one is closer to a more robust and meaningful approach. Sparsity is
not the goal, but to find less important channels using sparsity inducing formulation
is.

A.4 Channel Pruning of Batch-Normalized CNN
We describe the basic principle and algorithm of our channel pruning technique.

A.4.1 Preliminaries

Pruning constant channels. Consider convolution with batch normalization:

xl+1 = max
{
γl · BNµl,σl,εl(W l ∗ xl) + βl, 0

}
.

For the ease of notation, we let γ = γl. Note that if some element in γ is set to zero,
say, γ[k] = 0, its output image xl+1

:,:,:,k becomes a constant βk, and a convolution of a
constant image channel is almost everywhere constant (except for padding regions,
an issue to be discussed later). Therefore, we show those constant image channels
can be pruned while the same functionality of network is approximately kept:

• If the subsequent convolution layer does not have batch normalization,

xl+2 = max
{
W l+1 ∗ xl+1 + bl+1, 0

}
,

its values (a.k.a. elements in β) is absorbed into the bias term by the following
equation

bl+1
new := bl+1 + I(γ = 0) · ReLU(β)T sum_reduced(W l+1

:,:,·,·) ,

such that
xl+2 ≈ max

{
W l+1 ∗γ xl+1 + bl+1

new, 0
}
,
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where ∗γ denotes the convolution operator which is only calculated along
channels indexed by non-zeros of γ. Remark that W ∗ = sum_reduced(W:,:,·,·)
if W ∗

a,b = ∑
i,jWi,j,a,b.

• If the subsequent convolution layer has batch normalization,

xl+2 = max
{
γl+1 · BNµl+1,σl+1,εl+1

(
W l+1 ∗ xl+1

)
+ βl+1, 0

}
,

instead its moving average is updated as

µl+1
new := µl+1 − I(γ = 0) · ReLU(β)T sum_reduced(W l+1

:,:,·,·) ,

such that

xl+2 ≈ max
{
γl+1 · BNµl+1

new,σl+1,εl+1

(
W l+1 ∗γ xl+1

)
+ βl+1, 0

}
.

Remark that the approximation (≈) is strictly equivalence (=) if no padding is
used in the convolution operator ∗, a feature that the parallel work [120] does not
possess. When the original model uses padding in computing convolution layers,
the network function is not strictly preserved after pruning. In our practice, we
fine-tune the pruned network to fix such performance degradation at last. In short,
we formulate the network pruning problem as simple as to set more elements in
γ to zero. It is also much easier to deploy the pruned model, because no extra
parameters or layers are introduced into the original model.

To better understand how it works in an entire CNN, imagine a channel-to-
channel computation graph formed by the connections between layers. In this
graph, each channel is a node, their inference dependencies are represented by
directed edges. The γ parameter serves as a “dam” at each node, deciding whether
let the received information “flood” through to other nodes following the graph.
An end-to-end training of channel pruning is essentially like a flood control system.
There suppose to be rich information of the input distribution, and in two ways,
much of the original input information is lost along the way of CNN inference, and
the useful part — that is supposed to be preserved by the network inference —
should be label sensitive. Conventional CNN has one way to reduce information:
transforming feature maps (non-invertible) via forward propagation. Our approach
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introduces the other way: block information at each channel by forcing its output
being constant using ISTA.

ISTA. Despite the gap between Lasso and sparsity in the non-convex settings,
we found that ISTA [122] is still a useful sparse promoting method. But we just
need to use it more carefully. Specifically, we adopt ISTA in the updates of γs.
The basic idea is to project the parameter at every step of gradient descent to a
potentially more sparse one subject to a proxy problem: let l denote the training
loss of interest, at the (t+ 1)-th step, we set

γt+1 = min
γ

1
µt
‖γ − γt + µt∇γlt‖2 + λ‖γ‖1 , (A.1)

where ∇γlt is the derivative with respect to γ computed at step t, µt is the learning
rate, λ is the penalty. In the stochastic learning, ∇γlt is estimated from a mini-batch
at each step. Eq. (A.1) has closed form solution as

γt+1 = proxµtλ(γt − µt∇γlt) ,

where proxη(x) = max{|x| − η, 0} · sgn(x). The ISTA method essentially serves as
a “flood control system” in our end-to-end learning, where the functionality of each
γ is like that of a dam. When γ is zero, the information flood is totally blocked,
while γ 6= 0, the same amount of information is passed through in form of geometric
quantities whose magnitudes are proportional to γ.

Scaling effect. One can also see that if γ is scaled by α meanwhile W l+1 is
scaled by 1/α, that is,

γ := αγ, W l+1 := 1
α
W l+1

the output xl+2 is unchanged for the same input xl. Despite not changing the
output, scaling of γ and W l+1 also scales the gradients ∇γl and ∇W l+1l by 1/α and
α, respectively. As we observed, the parameter dynamics of gradient learning with
ISTA depends on the scaling factor α if one decides to choose it other than 1.0.
Intuitively, if α is large, the optimization of W l+1 is progressed much slower than
that of γ.

141



A.4.2 The Algorithm

We describe our algorithm below. The following method applies to both training
from scratch or re-training from a pre-trained model. Given a training loss l, a
convolutional neural net N , and hyper-parameters ρ, α, µ0, our method proceeds
as follows:

1. Computation of sparse penalty for each layer. Compute the memory
cost per channel for each layer denoted by λl and set the ISTA penalty for
layer l to ρλl. Here

λl = 1
I iw · I ih

klw · klh · cl−1 +
∑

l′∈T (l)
kl
′

w · kl
′

h · cl
′ + I lw · I lh

 , (A.2)

where

• I iw · I ih is the size of input image of the neural network.

• klw · klh is the kernel size of the convolution at layer l. Likewise, kl′w · kl
′
h

is the kernel size of subsequent convolution at layer l′.

• T (l) represents the set of the subsequent convolutional layers of layer l

• cl−1 denotes the channel size of the previous layer, which the l-th convo-
lution operates over; and cl′ denotes the channel size of one subsequent
layer l′.

• I lw · I lh is the image size of the feature map at layer l.

2. γ-W rescaling trick. For layers whose channels are going to get reduced,
scale all γls in batch normalizations by α meanwhile scale weights in their
subsequent convolutions by 1/α.

3. End-to-End training with ISTA on γ. Train N by the regular SGD,
with the exception that γls are updated by ISTA, where the initial learning
rate is µ0. Train N until the loss l plateaus, the total sparsity of γls converges,
and Lasso ρ∑l λ

l‖γl‖1 converges.

4. Post-process to remove constant channels. Prune channels in layer l
whose elements in γl are zero and output the pruned model Ñ by absorbing all
constant channels into subsequent layers (as described in the earlier section.).
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5. γ-W rescaling trick. For γls and weights in Ñ which were scaled in Step 2
before training, scale them by 1/α and α respectively (scaling back).

6. Fine-tune Ñ using regular stochastic gradient learning.

Remark that choosing a proper α as used in Steps 2 and 5 is necessary for using
a large µt · ρ in ISTA, which makes the sparsification progress of γls faster.

A.4.3 Guidelines for Tuning Hyper-parameters

We summarize the sensitivity of hyper-parameters and their impacts for optimization
below:

• µ (learning rate): larger µ leads to fewer iterations for convergence and
faster progress of sparsity. But if if µ too large, the SGD approach wouldn’t
converge.

• ρ (sparse penalty): larger ρ leads to more sparse model at convergence. If
trained with a very large ρ, all channels will be eventually pruned.

• α (rescaling): we use α other than 1. only for pretrained models, we typically
choose α from {0.001, 0.01, 0.1, 1} and smaller α warms up the progress of
sparsity.

We recommend the following parameter tuning strategy. First, check the cross-
entropy loss and the regularization loss, select ρ such that these two quantities are
comparable at the beginning. Second, choose a reasonable learning rate. Third, if
the model is pretrained, check the average magnitude of γs in the network, choose
α such that the magnitude of rescaled γl is around 100µλlρ. We found as long as
one choose those parameters in the right range of magnitudes, the optimization
progress is enough robust. Again one can monitor the mentioned three quantities
during the training and terminate the iterations when all three quantities plateaus.

There are several patterns we found during experiments that may suggest
the parameter tuning has not been successful. If during the first few epochs the
Lasso-based regularization loss keeps decreasing linearly while the sparsity of γs
stays near zero, one may decrease α and restart. If during the first few epochs the
sparsity of γs quickly raise up to 100%, one may decrease ρ and restart. If during
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the first few epochs the cross-entropy loss keeps at or increases dramatically to a
non-informative level, one may decrease µ or ρ and restart.

A.5 Experiments

A.5.1 CIFAR-10 Experiment

We experiment with the standard image classification benchmark CIFAR-10 with
two different network architectures: ConvNet and ResNet-20 [123]. We resize
images to 32× 32 and zero-pad them to 40× 40. We pre-process the padded images
by randomly cropping with size 32 × 32, randomly flipping, randomly adjusting
brightness and contrast, and standardizing them such that their pixel values have
zero mean and one variance.

ConvNet For reducing the channels in ConvNet, we are interested in studying
whether one can easily convert a over-parameterized network into a compact one.
We start with a standard 4-layer convolutional neural network whose network
attributes are specified in Table A.1. We use a fixed learning rate µt = 0.01, scaling
parameter α = 1.0, and set batch size to 125.

Model A is trained from scratch using the base model with an initial warm-up
ρ = 0.0002 for 30k steps, and then is trained by raising up ρ to 0.001. After the
termination criterion are met, we prune the channels of the base model to generate
a smaller network called model A. We evaluate the classification performance of
model A with the running exponential average of its parameters. It is found that
the test accuracy of model A is even better than the base model. Next, we start
from the pre-trained model A to create model B by raising ρ up to 0.002. We end
up with a smaller network called model B, which is about 1% worse than model
A, but saves about one third parameters. Likewise, we start from the pre-trained
model B to create model C. The detailed statistics and its pruned channel size
are reported in Table A.1. We also train a reference ConvNet from scratch whose
channel sizes are 32-64-64-128 with totally 224,008 parameters and test accuracy
being 86.3%. The referenced model is not as good as Model B, which has smaller
number of parameters and higher accuracy.

We have two major observations from the experiment: (1) When the base net-
work is over-parameterized, our approach not only significantly reduces the number
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of channels of the base model but also improves its generalization performance on
the test set. (2) Performance degradation seems unavoidable when the channels in
a network are saturated, and our approach gives satisfactory trade-off between test
accuracy and model efficiency.

base model A model B model C
layer output kernel channel channel channel channel
conv1 32× 32 5× 5 96 53 41 31
pool1 16× 16 3× 3
conv2 16× 16 5× 5 192 86 64 52
pool2 8× 8 3× 3
conv3 8× 8 3× 3 192 67 52 40
pool4 4× 4 3× 3
fc 1× 1 4× 4 384 128 128 127
ρ 0.001 0.002 0.008

param. size 1,986,760 309,655 207,583 144,935
test accuracy (%) 89.0 89.5 87.6 86.0

Table A.1. Comparisons between different pruned networks and the base network.

ResNet-20 We also want to verify our second observation with the state-of-art
models. We choose the popular ResNet-20 as our base model for the CIFAR-10
benchmark, whose test accuracy is 92%. We focus on pruning the channels in the
residual modules in ResNet-20, which has 9 convolutions in total. As detailed in
Table A.2, model A is trained from scratch using ResNet-20’s network structure
as its base model. We use a warm-up ρ = 0.001 for 30k steps and then train with
ρ = 0.005. We are able to remove 37% parameters from ResNet-20 with only about
1 percent accuracy loss. Likewise, Model B is created from model A with a higher
penalty ρ = 0.01.

A.5.2 ILSVRC2012 Experiment

We experiment our approach with the pre-trained ResNet-101 on ILSVRC2012
image classification dataset [123]. ResNet-101 is one of the state-of-the-art network
architecture in ImageNet Challenge. We follow the standard pipeline to pre-process
images to 224× 224 for training ResNets. We adopt the pre-trained TensorFlow
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group - block 1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3

ResNet-20 channels 16 16 16 32 32 32 64 64 64
param size.: 281,304

test accuracy (%): 92.0
model A channels 12 6 11 32 28 28 47 34 25

param size.: 176,596
test accuracy (%): 90.9

model B channels 8 2 7 27 18 16 25 9 8
param size.: 90,504

test accuracy (%): 88.8

Table A.2. Comparisons between ResNet-20 and its two pruned versions. The last
columns are the number of channels of each residual modules after pruning.

ResNet-101 model whose single crop error rate is 23.6% with about 4.47 × 107

parameters.2 We set the scaling parameter α = 0.01, the initial learning rate
µt = 0.001, the sparsity penalty ρ = 0.1, and the batch size = 128 (across 4 GPUs).
The learning rate is decayed every four epochs with rate 0.86. We create two pruned
models from the different iterations of training ResNet-101: one has 2.36 × 107

parameters and the other has 1.73× 107 parameters. We then fine-tune these two
models using the standard way for training ResNet-101, and report their error
rates. The Top-5 error rate increases of both models are less than 0.5%. The
Top-1 error rates are summarized in Table A.3. To our knowledge, only a few
works have reported their performance on this very large-scale benchmark w.r.t.
the Top-1 errors. We compare our approach with some recent works in terms of
model parameter size, flops, and error rates. As shown in Table A.3, our model v2
has achieved a compression ratio more than 2.5 while maintaining more than 1%
lower error rates than that of other state-of-the-art models at comparable size of
parameters.

In the first experiment (CIFAR-10), we train the network from scratch and allo-
cate enough steps for both γ and W adjusting their own scales. Thus, initialization
of an improper scale of γ-W is not really an issue given we optimize with enough
steps. But for the pre-trained models which were originally optimized without any
constraints of γ, the γ’s scales are often unanticipated. It actually takes as many

2https://github.com/tensorflow/models/tree/master/slim
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network param size. flops error (%) ratio
resnet-50 pruned [119] ∼ 1.65× 107 3.03× 109 ∼ 26.8 66%

resnet-101 pruned (v2, ours) 1.73× 107 3.69× 109 25.44 39%
resnet-34 pruned [124] 1.93× 107 2.76× 109 27.8 89%

resnet-34 2.16× 107 3.64× 109 26.8 -
resnet-101 pruned (v1, ours) 2.36× 107 4.47× 109 24.73 53%

resnet-50 2.5× 107 4.08× 109 24.8 -
resnet-101 4.47× 107 7.8× 109 23.6 -

Table A.3. Attributes of different versions of ResNet and their single crop errors on
ILSVRC2012 benchmark. The last column means the parameter size of pruned model vs.
the base model.

steps as that of training from scratch for γ to warm up. By adopting the rescaling
trick setting α to a smaller value, we are able to skip the warm-up stage and quick
start to sparsify γs. For example, it might take more than a hundred epoch to
train ResNet-101, but it only takes about 5-10 epochs to complete the pruning and
a few more epochs to fine-tune.

A.5.3 Image Foreground-Background Segmentation Experiment

As we have discussed about the two major observations in Section A.5.1, a more ap-
pealing scenario is to apply our approach in pruning channels of over-parameterized
model. It often happens when one adopts a pre-trained network on a large task
(such as ImageNet classification) and fine-tunes the model to a different and smaller
task [118]. In this case, one might expect that some channels that have been useful
in the first pre-training task are not quite contributing to the outputs of the second
task.

We describe an image segmentation experiment whose neural network model is
composed from an inception-like network branch and a densenet network branch.
The entire network takes a 224× 224 image and outputs binary mask at the same
size. The inception branch is mainly used for locating the foreground objects while
the densenet network branch is used to refine the boundaries around the segmented
objects. This model was originally trained on multiple datasets.

In our experiment, we attempt to prune channels in both the inception branch
and densenet branch. We set α = 0.01, ρ = 0.5, µt = 2× 10−5, and batch size = 24.
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We train the pre-trained base model until all termination criterion are met, and
build the pruned model for fine-tuning. The pruned model saves 86% parameters
and 81% flops of the base model. We also compare the fine-tuned pruned model
with the pre-trained base model across different test benchmark. Mean IOU is used
as the evaluation metric.3 It shows that pruned model actually improves over the
base model on four of the five test datasets with about 2% ∼ 5%, while it performs
worse than the base model on the most challenged dataset DUT-Omron, whose
foregrounds might contain multiple objects.

base model pruned model
test dataset (#images) mIOU mIOU
MSRA10K [125] (2,500) 83.4% 85.5%

DUT-Omron [126] (1,292) 83.2% 79.1%
Adobe Flickr-portrait [127] (150) 88.6% 93.3%

Adobe Flickr-hp [127] (300) 84.5% 89.5%
COCO-person [128] (50) 84.1% 87.5%

param. size 1.02× 107 1.41× 106

flops 5.68× 109 1.08× 109

Table A.4. mIOU reported on different test datasets for the base model and the pruned
model.

A.6 Conclusions
We proposed a model pruning technique that focuses on simplifying the computation
graph of a deep convolutional neural network. Our approach adopts ISTA to update
the γ parameter in batch normalization operator embedded in each convolution.
To accelerate the progress of model pruning, we use a γ-W rescaling trick before
and after stochastic training. Our method cleverly avoids some possible numerical
difficulties such as mentioned in other regularization-based related work, hence is
easier to apply for practitioners. We empirically validated our method through
several benchmarks and showed its usefulness and competitiveness in building
compact CNN models.

3https://www.tensorflow.org/api_docs/python/tf/metrics/mean_iou
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Figure A.1. Visualization of the number of pruned channels at each convolution in the
inception branch. Colored regions represents the number of channels kept. The height
of each bar represents the size of feature map, and the width of each bar represents the
size of channels. It is observed that most of channels in the bottom layers are kept while
most of channels in the top layers are pruned.
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