
Recognizing Objects in Adversarial Clutter:
Breaking a Visual CAPTCHA

Greg Mori Jitendra Malik
Computer Science Division Computer Science Division

University of California, Berkeley University of California, Berkeley
Berkeley, CA 94720 Berkeley, CA 94720

mori@cs.berkeley.edu malik@cs.berkeley.edu

Abstract

In this paper we explore object recognition in clutter. We
test our object recognition techniques on Gimpy and EZ-
Gimpy, examples of visual CAPTCHAs. A CAPTCHA
(“Completely Automated Public Turing test to Tell Com-
puters and Humans Apart”) is a program that can generate
and grade tests that most humans can pass, yet current com-
puter programs can’t pass. EZ-Gimpy (see Fig. 1, 5), cur-
rently used by Yahoo, and Gimpy (Fig. 2,9) are CAPTCHAs
based on word recognition in the presence of clutter. These
CAPTCHAs provide excellent test sets since the clutter they
contain is adversarial; it is designed to confuse computer
programs. We have developed efficient methods based on
shape context matching that can identify the word in an EZ-
Gimpy image with a success rate of 92%, and the requisite
3 words in a Gimpy image 33% of the time. The problem of
identifying words in such severe clutter provides valuable
insight into the more general problem of object recognition
in scenes. The methods that we present are instances of a
framework designed to tackle this general problem.

Figure 1: An EZ-Gimpy CAPTCHA in use at Yahoo

1. Introduction
A CAPTCHA is a program [19] that can generate and grade
tests that:

1. Most humans can pass, BUT

Figure 2: A Gimpy CAPTCHA. The task is to list 3 differ-
ent words from the image.

2. Current computer programs can’t pass

CAPTCHA stands for “Completely Automated Public Tur-
ing test to Tell Computers and Humans Apart”.

The concept behind such a program arose from real
world problems faced by internet companies such as Yahoo
and AltaVista. Yahoo offers free email accounts. The in-
tended users are humans, but Yahoo discovered that various
web pornography companies and others were using “bots”
to sign up for thousands of email accounts every minute
from which they could send out junk mail. The solution was
to require that a user solve a CAPTCHA test before they re-
ceive an account. The program picks a word from a dictio-
nary, and produces a distorted and noisy image of the word
(see Fig. 1). The user is presented the image and is asked to
type in the word that appears in the image. Given the type of
deformations used, most humans succeed at this test, while
current programs (including OCR programs) fail the test.
The goal of screening out the “bots” has been achieved.

Manuel Blum’s group at CMU have designed a number
of different CAPTCHAs. We strongly recommend visit-
ing http://www.captcha.net to view some examples of these.
Gimpy is based on word recognition in the presence of clut-
ter. The task is to identify 3 of the approximately 7 words
in a cluttered image. The Yahoo test is an easier version

1

Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03)
1063-6919/03 $17.00 © 2003 IEEE

of this, the so-called EZ-Gimpy, which involves only a sin-
gle word. Pix is based on image recognition of typically
more abstract categories. Chew and Baird [5] also devel-
oped a test involving heavily degraded fonts. CAPTCHAs
have also been designed based on auditory recognition [4].
For visually impaired humans, these may be the most ap-
propriate tests.

The underlying principle behind the design of
CAPTCHAs is a reduction to a hard AI problem. In
the words of Ahn, Blum and Langford [19]: Any program
that passes the tests generated by a CAPTCHA can be
used to solve a hard unsolved AI problem. Their hope is
thus to provide challenge problems for AI researchers. If
the problem cannot be solved by computer programs, it
can be used as a CAPTCHA and provide practical help to
companies like Yahoo, AltaVista etc. If it can be solved,
that marks scientific progress on a hard AI problem.

We, as vision researchers, decided to take up the chal-
lenge of defeating EZ-Gimpy and Gimpy. This paper de-
scribes an algorithm which achieves this goal. On EZ-
Gimpy our program correctly identifies the word 92% of
the time, which implies that Yahoo can no longer use it to
screen out “bots”. Our success rate of 33% on Gimpy also
renders it ineffective as such a screening tool.

These two datasets provide more than just a colourful toy
problem to work on. In this paper we explore two major as-
pects of object recognition: difficult clutter, and the trade-
offs between recognition based on parts versus the whole
object. The CAPTCHAs we use present challenging clut-
ter since they are designed to be difficult for computer pro-
grams to handle. Recognition of words lends itself easily to
being approached either as recognition by parts (individual
letters or bigrams) or whole objects (entire words).

More importantly, these datasets are large. There are
about 600 words that need to be recognized. Also, since the
source code for generating these CAPTCHAs is available
(“P” for public), we have access to a practically infinite set
of test images with which to work. This is in stark contrast
to many object recognition datasets in which the number of
objects is limited, and it is difficult to generate many rea-
sonable test images.

There are definitely limitations to this dataset in terms of
studying general object recognition. Most notably, these are
2D objects and there is no variation due to 3D pose. In ad-
dition, there are no shading and lighting effects in synthetic
images of words.

We believe that the ability to do quantitative experi-
ments using a large set of test images with difficult clut-
ter outweighs these drawbacks. We hope that other re-
searchers will attempt their techniques on these and other
CAPTCHAs.

Many computer vision researchers have worked on the
problem of object recognition. Of these approaches, the

most plausible candidates for success in this domain are Le-
Cun et al. [11] and Amit et al. [1]. LeCun et al. use convo-
lutional neural networks to perform handwritten character
recognition. Amit et al. use point features combined with
graphs to match various deformable objects. These tech-
niques are somewhat robust to clutter, but it is not obvious
that they could deal the kind of “adversarial” clutter found
in Gimpy images.

The structure of the paper is as follows. In section 2 we
describe our general purpose matching framework. In sec-
tion 3 we explore the tradeoffs in parts-based and holistic
matching. We describe two algorithms based on this frame-
work in sections 4 and 5, and apply them to EZ-Gimpy and
Gimpy. We conclude in section 6.

2. Matching using Shape Contexts
We are given a database of images of known objects. Our
task is to find instances of these objects in a cluttered en-
vironment. In the case of Gimpy images, these objects are
words or letters, possibly in a variety of fonts.

In our work, we will compare objects as shapes – each
represented by a discrete set of � points � � ���� � � � � ���,
�� � �

� sampled from the internal and external contours of
the shape. Belongie et al. [2, 3] introduced the shape context
descriptor based on such a representation and used it in a
deformable template approach to match handwritten digits
and 3D objects. Consider the set of vectors originating from
a point to all other sample points on a shape. These vectors
express the configuration of the entire shape relative to the
reference point. Obviously, this set of ��� vectors is a rich
description, since as � gets large, the representation of the
shape becomes exact.

The full set of vectors as a shape descriptor is much too
detailed since shapes and their sampled representation may
vary from one instance to another in a category. The distri-
bution over relative positions is a more robust and compact,
yet highly discriminative descriptor. For a point �� on the
shape, compute a coarse histogram �� of the relative coor-
dinates of the remaining �� � points,

����� � � �� �� �� � �� � ��� � bin���� �

This histogram is defined to be the shape context of ��. The
descriptor should be more sensitive to differences in nearby
pixels, which suggests the use of a log-polar coordinate sys-
tem. An example is shown in Fig. 3(c). A related approach,
developed for 3D data, is the spin images technique of John-
son and Hebert [9].

2.1. Matching Framework
The work by Belongie et al. [3] resulted in extremely good
performance, e.g. ����� accuracy on the MNIST handwrit-
ten digit set, as well as on a variety of 3D object recogni-

2

Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03)
1063-6919/03 $17.00 © 2003 IEEE

(a) (b) (c)

θ

lo
g

r

θ

lo
g

r

θ

lo
g

r

(d) (e) (f)

Figure 3: Shape contexts. (a,b) Sampled edge points of two
shapes. (c) Diagram of log-polar histogram bins used in
computing the shape contexts. (d-f) Example shape con-
texts for reference samples marked by Æ� �� � in (a,b). Each
shape context is a log-polar histogram of the coordinates of
the rest of the point set measured using the reference point
as the origin. (Dark=large value.) Note the visual similarity
of the shape contexts for Æ and �, which were computed for
relatively similar points on the two shapes. By contrast, the
shape context for � is quite different.

tion problems. However, applying this deformable match-
ing algorithm to a large database of models would be com-
putationally prohibitive. To deal with this problem, Mori et
al. [14] described a two stage approach to object recogni-
tion, namely:

1. Fast pruning: Given a query image, we should be able
to quickly retrieve a small set of likely candidate shape
and location pairs from a potentially very large collec-
tion of stored shapes.

2. Detailed matching: Once we have a small set of can-
didate shapes, we can perform a more expensive and
more accurate matching procedure to find the best
matching shapes to the query image.

In this paper we use a matching framework of this style.
In the following sections we first describe a new descriptor
that is an extension of shape contexts. We then provide the
details for the two stages in our recognition framework, fast
pruning and detailed matching.

2.2. Generalized Shape Contexts
We have extended the shape context descriptor by encoding
more descriptive information than point counts in the his-

togram bins. In this work, to each edge point �� we attach a
unit length tangent vector �� that is the direction of the edge
at ��. In each bin we sum the tangent vectors for all points
falling in the bin.

������ �
�

����

��� where � � �� �� ��� �� � ��� � bin����

Each bin now holds a single vector in the direction of the
dominant orientation of edges in the bin. We compare them
using a distance similar to the �� distance in [3].

	����� ���� �
�

bins �

�������� �������
�

��������� ��������

We call these extended descriptors generalized shape con-
texts.

2.3. Fast Pruning
The goal of the fast pruning stage is to construct a small set
of hypotheses of objects at various locations in the query
image. We use tests based on representative shape contexts
to accomplish this goal.

The matching process proceeds in the following man-
ner. For each of the known shapes
�, we precompute a
large number � (about 100) of shape contexts �
��

� � �
�� �� � � � � ��. But for the query image �, we only compute
a small number � of representative shape contexts. To com-
pute these � shape contexts we randomly select � sample
points from the image. We then do comparisons with each
of the known shapes using only these shape contexts in a
voting scheme.

In these cluttered images, many of the shape contexts
contain noisy data, or are not located on the shape
�.
Hence, for each of the known shapes
� we find the best
� representative shape contexts, the ones with the smallest
distances. Call this set of indices��

1. The distance between
� and
� is then:

	���
�� �
�

�

�

����

	�
��
��
�

����
� �

��

where ���� � �������	�
�
�
��
�

�
� �

�� is a normalizing factor that measures how discrimi-
native the representative shape context
��

� is:

�� �
�

���

�

����

	�
��
��
�

����
� �

1The same shape can appear many times in one query image. There-
fore, there can be many sets �� per model ��. We group nearby represen-
tative shape contexts to obtain these sets.

3

Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03)
1063-6919/03 $17.00 © 2003 IEEE

where � is the set of all shapes.
We also obtain an estimate of the position of the shape

��. If representative shape context ���� at point ���
in the image best matches point ������ on shape ��, it
“votes” for shape �� at location ���� � �������, with weight

������� ��
����
� �. The final estimate of the location �� of

�� is:

�� �
�

��

�

����

��� ������� ��
����
� �� � ���� � �������

where �� �
�

����

��� ������� ��
����
� ��

The end result of our fast pruning procedure is a set of
���� ��� ��	����� tuples. We can threshold this set based
on distance to obtain a small set of candidates.

Voting ideas have been used before in object recognition
(e.g. Lamdan et al. [10]). Our method is different from ones
such as geometric hashing in that it uses soft weighting of
votes and locations instead of making hard decisions.

2.4. Detailed Matching
The detailed matching stage uses a deformable template ap-
proach. In such an approach, a query shape is compared
to a candidate model shape by attempting to deform the
model into alignment with the query shape. We implement
this using iterations of correspondence through shape con-
text matching and deformation using thin plate splines. A
cost for performing this deformation is computed and used
along with the shape context distance as the matching cost
between the model and the query. More details can be found
in [3].

3. Approaches to Recognition
There are two important types of data available to us in solv-
ing word recognition tasks – lexical information and visual
cues. The lexical information could be the set of words,
the set of bigrams, or the set of 26 letters, depending upon
the scope of one’s view. The visual cues are the grayscale
patches, edges and other features in the image. In order to
design a recognition algorithm, one must exploit the infor-
mation present in these two cues. In this work we study the
role of each, and the tradeoffs that exist in using them.

In the field of handwriting recognition, the different
levels of lexical information are well studied. Some ap-
proaches, such as [12], take a holistic approach, recognizing
entire words, while others such as [15] focus more on rec-
ognizing individual characters. Plamondon and Srihari [16]
provide an extensive survey of this work.

Holistic approaches incur more computational cost since
there are more models, but have more expressive and dis-
criminative power since the visual cues are gathered over

large areas. The more efficient, essentially parts-based al-
gorithms are faster, but can have difficulty in clutter when
the visual cues of the parts are corrupted.

In the following sections we will develop two algo-
rithms. The first takes a bottom-up, parts-based approach,
finding characters first, and using the lexical information to
decide which characters can be formed into words at a later
stage. The second algorithm uses a holistic approach and
tries to find words immediately. We devise pruning meth-
ods to deal with the associated efficiency problems.

In our experiments we will use algorithm A to break EZ-
Gimpy, and algorithm B for EZ-Gimpy and Gimpy. We
will show how the clutter in Gimpy corrupts the visual cues
to the degree that individual letters are no longer discrim-
inable. In such scenarios a holistic approach is desirable.
However, with good visual cues as in EZ-Gimpy, an effi-
cient parts-based approach has its merits.

4. Algorithm A
Our first algorithm for finding words in images works from
the bottom-up, starting with visual cues and incorporates
lexical information later on. It consists of three steps:

1. Perform a series of quick tests to hypothesize locations
of letters in the image

2. Extract strings of these hypothesized letters that form
candidate words

3. Choose the most likely word(s) by evaluating a match-
ing score for each of these words

An example of processing an image using the three stages
of our method is shown in Fig. 4.

The general philosophy that we follow is the use of
a coarse to fine matching strategy for computational effi-
ciency. We start with quick, approximate tests that prune
away much of the search space. These tests may have high
false positive rates, but should reject very few correct hy-
potheses. We work our way down to using more compu-
tationally expensive, but more accurate, tests for the final
comparison that determines which word is present. How-
ever, we need only apply these expensive tests to a small
number of remaining hypotheses. Previous work by Geman
and Jedynak [6] and Viola and Jones [18] follow a similar
vein of thought.

Specifically, the first step in our method prunes a large
space of letter locations (26 letters that could occur any-
where in the image) down to about 100 hypothesized
�
�����
�������� tuples. The second step then analyzes
this set of tuples to produce 1 to 10 actual words that are
found in the dictionary. Finally, the expensive task of as-
signing a score to a word is performed on this small set. In
the following sections we will provide the details of each
step in our algorithm.

4

Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03)
1063-6919/03 $17.00 © 2003 IEEE

(a) (b)

(c) (d)

Figure 4: The 3 steps in algorithm A demonstrated on a
simple example: (a) Gimpy image (b) Locations of hypoth-
esized letter locations (c) DAG of possible strings of letters
(d) Scores of top matching words (shown on paths through
DAG). The word “profit” is found as the best matching
word.

4.1. Finding Letter Hypotheses
The first step in this method is to hypothesize a list of
�������� �������	� tuples. This stage must be fast – at each
location in the image any one of the 26 letters could be
present.

We start with a training set of 26 images, each an unclut-
tered image of a single letter. We run Canny edge detection
on these images and construct a generalized shape context
for each edge point in each training image. This gives us a
pre-computed database of approximately 2600 generalized
shape contexts.

We employ the voting scheme, based on the represen-
tative shape contexts technique in [14], described in sec-
tion 2.3. First, we sample �
� the number of Canny edge
points2 in the image at which we compute representative
shape contexts. This number is typically 30 to 50.

The process outlined above gives us a set of
�������� �������	� ������ tuples. We threshold based on the
scores to obtain a final set of �������� �������	� hypotheses
(5 to 30 total).

4.2. Extracting Candidate Words
At this point we have a set of ������� � �������	� hypothe-
ses strewn about the image. There tend to be clusters of
hypotheses around real letters in the image, as shown in
Fig. 4(b). The next step is to find sequences of these let-
ters that form candidate words. To this end we construct a
directed acyclic graph (DAG) in which there is a node for
each letter hypothesis ��, and an edge � � ���� ��� between

2Note that in images containing background texture, the Canny edge
detector will fire nearly everywhere. We need a way of choosing represen-
tative shape contexts that are likely to be on or near letters, instead of being
“wasted” on the background. We sample our representative shape contexts
near high values of the texture gradient [13] operator. This operator is de-
signed to measure texture differences and therefore in the interior of any
homogeneous texture, it will have a small response.

two nodes if letter hypothesis �� can be used as the letter
succeeding �� in a word. We compute this consistency of
a pair of letters by considering their bounding boxes (ob-
tained from training images of letters). First, letter �� must
be at a location to the left of letter �� , since all words are
read left to right. Second, the bounding boxes should nei-
ther overlap too much nor be too far away from each other.
This enforces spatial continuity within words. Each path in
this DAG represents one possible word.

In a typical Gimpy image there can easily be ��� to ���

paths through this DAG. However, most of these paths will
be nonsense, strings of letters such as “ghxr”. Again we
wish to do some quick pruning, in order to reduce the num-
ber of paths through this DAG. We use tri-grams for this
pruning. A tri-gram is a sequence of 3 letters, hence there
are ��� possible tri-grams. An 	-letter word has 	 � � tri-
grams. The probability of all 	 � � trigrams for a word
appearing by chance in our DAG is very low. We use this
fact to devise our pruning method.

We precompute all tri-grams of all words in the dictio-
nary (EZ-Gimpy uses 561 words). After obtaining the DAG
of letter hypotheses for our test image, we can quickly com-
pute all the tri-grams (usually around 1000) present in it.
Then we prune – a dictionary word cannot be present in the
image unless all of its tri-grams are present. Finally, for the
small number of remaining words, we check that each of
them is actually found as a path through the DAG, since the
	 � � tri-grams might not actually occur in sequence. All
words that pass this final test are then listed in the final set
of candidate words. Note that our technique is only one ex-
ample strategy for string matching. This is a well studied
subject [7].

4.3. Choosing the Most Likely Word
We now have a set of candidate words and wish to choose
the most likely one to use as our answer to the Gimpy test.
This final step is the most computationally intensive. How-
ever, we are left with only a few words which need to be
evaluated.

The score we use for ranking the set of candidate words
is based on deformable matching cost of individual letters,
similar to that used by Belongie et al. [3] used for matching
handwritten characters. Scores are obtained through match-
ing costs of generalized shape contexts. The score for a
word is the average score for matching each of its letters.

This is the final step. We compute matching scores for
each of our candidate words. Our answer to the Gimpy test
is the word with the best matching score.

4.4. Results
An EZ-Gimpy CAPTCHA consists of a single deformed
word in a cluttered image. See Fig. 5 for examples of typi-

5

Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03)
1063-6919/03 $17.00 © 2003 IEEE

(a) collar (b) here

(c) join (d) again

(e) flag (f) canvas

(g) smile (h) line

(i) horse (j) jewel

(k) weight (l) sound

(m) rice (n) spade

Figure 5: Examples of results on EZ-Gimpy images. The
best matching word is shown below each image. Examples
(a),(c-g),(i-n) produced correct results, (b) and (h) incorrect
results.

cal EZ-Gimpy images. We used algorithm A to quickly find
the word present in these images.

For our experiments, we generated 200 examples of
the EZ-Gimpy CAPTCHA using the code available at
http://www.captcha.net. Of these examples, 9 were used
for tuning parameters in the bounding box similarity com-
putation and texture gradient modules. The remaining 191
examples were used as a test set. In 158 of these 191 test
cases, the top matching word from our method was the cor-
rect one, a success rate of 83%.

Note that it is also possible to use a soft probabilistic
strategy involving HMMs choose the most likely word from
the DAG, instead of making hard pruning decisions.

Some examples of the 191 EZ-Gimpy CAPTCHA im-
ages used, and the top matching words are shown in Fig. 5.
The full set of 191 test images and results can be viewed
online at http://www.cs.berkeley.edu/�mori/gimpy/ez/.

Figure 6: Examples of letter sized patches from Gimpy
CAPTCHAs. It is very difficult to read these isolated let-
ters without the long range context in which they appear.
We must instead read whole words at once.

(a) (b)

(c) (d)

Figure 7: Processing a Gimpy image using algorithm B. (a)
Input image. We process each pair of words separately. (b)
Edge detection output on a single pair of words. (c) Hypoth-
esized bigrams. (d) Pixels remaining after guess of word
“round”. Multiple iterations of step (d) – guess a word, re-
move pixels, guess remaining word are performed.

5. Algorithm B

The second algorithm is a holistic one that attempts to find
entire words at once, instead of looking for letters. In severe
clutter, many of the parts can be occluded or highly ambigu-
ous. In the case of Gimpy, letters are often not enough. Fig-
ure 6 shows some example letter-sized patches from Gimpy
images. It is nearly impossible to determine which charac-
ter(s) is present in these patches. However, when one sees
the entire word, it is clear which word is displayed. This is
the motivation for a holistic approach to recognition.

We construct shape contexts that are elliptical in shape,
with an outer radius of about 4 characters horizontally, and
about �

�
of a character vertically. These are our features for

doing the recognition at a word-level. However, a brute-
force approach, using representative shape contexts to com-
pare to every word in the dictionary, is infeasible because of
computational cost. Instead, we do some pruning to reduce
our set of words down to a manageable size, and then use
this holistic approach to match complete words. Figure 7
shows the steps in processing an image using this algorithm.

6

Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03)
1063-6919/03 $17.00 © 2003 IEEE

5.1. Pruning with Bigrams
Figure 9 shows some examples of Gimpy CAPTCHAs.
Each image contains 10 words (some duplicates) overlaid
in pairs, with some background clutter. We examine each
pair of words separately. The task is to correctly recognize
any 3 of these words. In these images, the most salient parts
of the words are often the beginning or ending few letters.
Moreover, given the opening or closing bigram, the number
of possible candidate words is very small. The pruning we
do is based on these observations. In the 411 word gimpy
dictionary there are 128 distinct opening and 112 closing
bigrams. If we can accurately determine these bigrams we
will be left with a small number of candidate words.

This bigram pruning is done using the fast pruning
method outlined above. In our experiments on Gimpy, we
truncate the list of bigrams (either beginning or ending), or-
dered by shape context distance, such that we are left with
a shortlist of about 20 candidate words.

Some holistic matching can be done here to reduce the
size of the shortlist. In our experiments we sorted these can-
didate words using the word-sized shape contexts as fea-
tures in the fast pruning process, to be left with about 4
words.

5.2. Layers of Words
In a Gimpy CAPTCHA, the words appear in pairs. Given
a guess of one of the words, we can try to remove it, and
recognize the second word based on the remaining pixels.
The removal of pixels is done with an assignment problem.
We match edge pixels on our guess of the first word with
the edges in the image. We remove the edges in the image
that were used in the matching, and then repeat our bigram
pruning to obtain a new shortlist of possible second words.
This type of analysis is similar to work on transparency such
as [8, 17].

5.3. Final Score
After the layers analysis we are left with 16 pairs of words
(4 guesses for the first word, each with its own 4 guesses for
the second word). The final step is to assign scores to each
of these words.

For each pair, we produce a synthetic image of the two
words overlaid at their estimated locations (given by the
pruning method). We then compute shape contexts in the
synthetic image. The final score for a word is the represen-
tative shape contexts pruning cost using a sizable fraction
(.3 in experiments) of the edge pixels from the word as the
value for �, the number of edge points to match. Most of the
edges in the center of the word are corrupted beyond recog-
nition, hence it isn’t useful to use them in the final scoring.

The two words in each pair are scored separately, we
select the best �� edge points from each word. In the Gimpy

CAPTCHA, the task is to recognize 3 words. We choose the
3 words with the best score as our answer.

5.4. Results
We tested algorithm B on 24 instances of the Gimpy
CAPTCHA. In order to pass, the program must guess 3
words, all of which are in the image. Our results are
shown in Fig. 8 and 9. We successfully guess 3 words
from the image 33% of the time. With our 33% accuracy,
this CAPTCHA would be ineffective in applications such
as screening out “bots” since a computer could flood the
application with thousands of requests.

Correct Words Percentage of Tests
� � 92%
� � 75%
� 33%

Figure 8: Results on Gimpy. The task is to guess 3 words in
the image. We pass the test 33% of the time. However, one
or two words guessed are correct very frequently.

The sharp decrease in accuracy in Fig. 8 is not unex-
pected. If we assume that the accuracy of each of the 3
words is independent, and a single word accuracy of 70%,
we would only expect to pass the test ���� � ���� of the
time.

We also applied algorithm B (searching for entire words,
without the layers analysis) to the same 191 instances of
EZ-Gimpy as algorithm A. We found the correct word in
176 of these, for a success rate of 92%.

6. Conclusion
In this paper we have explored methods for performing ob-
ject recognition in clutter. We have explored the tradeoffs
between using high level lexical information, in our case the
dictionary of words, to guide recognition versus relying on
low level cues. We tested our algorithms on two word-based
CAPTCHAs that allow us to do experiments with many test
images.

Clutter that involves other real objects, like the words in
the Gimpy images, makes recognition much more difficult
than the heavily textured backgrounds of EZ-Gimpy. Our
algorithms were able to effectively deal with both of these
types of clutter and break these two CAPTCHAs with a high
frequency of success.

The problem of identifying words in such severe clutter
provides valuable insight into the more general problem of
object recognition in scenes. Parts are often ambiguous in
clutter, but at the same time anchoring around obvious parts
can improve efficiency. We have presented algorithms that

7

Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03)
1063-6919/03 $17.00 © 2003 IEEE

dry,clear,medical door,farm,important

public,nose,receipt with,true,sponge

carriage,potato,clock church,tongue,bad

narrow,bulb,right sudden,apple,oven

Figure 9: Results on Gimpy. The 3 words that are guessed
using Algorithm B are shown below each image.

are instances of a general framework that can be applied to
other recognition problems.

References

[1] Y. Amit and A. Kong. Graphical templates for model regis-
tration. IEEE Trans. PAMI, 1996.

[2] S. Belongie, J. Malik, and J. Puzicha. Shape context: A
new descriptor for shape matching and object recognition.
In NIPS, November 2000.

[3] S. Belongie, J. Malik, and J. Puzicha. Shape matching and
object recognition using shape contexts. IEEE Trans. PAMI,
24(4):509–522, April 2002.

[4] N. Chan. BYAN: Sound Oriented CAPTCHA, website
http://drive.to/research.

[5] M. Chew and H. S. Baird. Baffletext: A human interac-
tive proof. In Proceedings of SPIE-IS&T Electronic Imag-
ing, Document Recognition and Retrieval X, pages 305–316,
January 2003.

[6] D. Geman and B. Jedynak. Model-based classification trees.
IEEE Trans. Info. Theory, 47(3), 2001.

[7] D. Gusfield. Algorithms on Strings, Trees, and Sequences:
Computer Science and Computational Biology. Press Syn-
dicate of the University of Cambridge, 1997.

[8] A. Jepson, D. Fleet, and M. Black. A layered motion repre-
sentation with occlusion and compact spatial support. Euro-
pean Conference on Computer Vision, 1:692–706, 2002.

[9] A. Johnson and M. Hebert. Using spin images for efficient
object recognition in cluttered 3d scenes. IEEE Trans. PAMI,
21(5), May 1999.

[10] Y. Lamdan, J. Schwartz, and H. Wolfson. Affine invariant
model-based object recognition. IEEE Trans. Robotics and
Automation, 6:578–589, 1990.

[11] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, November 1998.

[12] S. Madhvanath and V. Govindaraju. The role of holistic
paradigms in handwritten word recognition. IEEE Trans.
PAMI, 23(2), February 2001.

[13] D. Martin, C. Fowlkes, and J. Malik. Learning to find bright-
ness and texture boundaries in natural images. NIPS, 2002.

[14] G. Mori, S. Belongie, and J. Malik. Shape contexts enable
efficient retrieval of similar shapes. In CVPR, volume 1,
pages 723–730, 2001.

[15] J. Pitrelli, J. Subrahmonia, and M. B. Toward island-of-
reliability-driven very-large-vocabulary on-line handwriting
recognition using character confidence scoring. ICASSP,
2001.

[16] R. Plamondon and S. S. On-line and off-line handwriting
recognition: A comprehensive survey. IEEE Transactions
on Pattern Analysis and Recognition, 22(1):63–84, January
2000.

[17] R. Szeliski, S. Avidan, and P. Anandan. Layer extrac-
tion from multiple images containing reflections and trans-
parency. IEEE Computer Vision and Pattern Recognition,
1:246–253, 2000.

[18] P. Viola and M. Jones. Robust real-time object detection.
2nd Intl. Workshop on Statistical and Computational Theo-
ries of Vision, 2001.

[19] L. von Ahn, M. Blum, and J. Langford. Telling humans and
computers apart (automatically). CMU Tech Report CMU-
CS-02-117, February 2002.

8

Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03)
1063-6919/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

