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Abstract

This paper compares two methods for object localization
from contours: shape context and chamfer matching of tem-
plates. In the light of our experiments, we suggest improve-
ments to the shape context: Shape contexts are used to find
corresponding features between model and image. In real
images it is shown that the shape context is highly influ-
enced by clutter, furthermore even when the object is cor-
rectly localized, the feature correspondence may be poor.
We show that the robustness of shape matching can be in-
creased by including a figural continuity constraint. The
combined shape and continuity cost is minimized using the
Viterbi algorithm on features, resulting in improved local-
ization and correspondence. Our algorithm can be gener-
ally applied to any feature based shape matching method.

Chamfer matching correlates model templates with the
distance transform of the edge image. This can be done
efficiently using a coarse-to-fine search over the transfor-
mation parameters. The method is robust in clutter, how-
ever multiple templates are needed to handle scale, rotation
and shape variation. We compare both methods for locat-
ing hand shapes in cluttered images, and applied to word
recognition in EZ-Gimpy images.

1. Introduction

People can recognize objects by their geometry alone, for
example in line drawings. However, segmenting an ob-
ject in a scene using low level features is by itself a hard
problem. A common approach is, therefore, to use a pro-
totype shape, and search for it in the image. This leads
to the task of shape matching, which has numerous appli-
cations, such as object localization, image retrieval, model
registration, and tracking. One way to represent a shape
is by a set number of feature points, for example Canny
edges. In order to match two shapes, point correspondences
on the two shapes have to be established. Subsequently a
transformation which aligns the two shapes can be found.
The type of transformation depends on the particular set-
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ting. Two examples are 2D affine transforms, and non-
rigid thin-plate spline transformations. The two problems
of finding correspondences and estimating the transforma-
tion are tightly coupled: The better the correspondences are
known, the better the transformation can be estimated, and
vice versa. Therefore, many methods are based on an it-
erated two-step algorithm, alternating estimation of corre-
spondence and transformation.

In the next section, we review existing work on shape
based and chamfer matching. The two methods are ex-
plained briefly in section 2, and we outline some of the
problems that arise when applied to scenes with cluttered
background in section 3. In section 4 we show how shape
context matching can be significantly improved by using
a continuity constraint. The dynamic programming algo-
rithm used for optimization readily generalizes to any other
type of feature. Section 5 shows experimental results on
two types of data, images of hands, and words on textured
background.

1.1. Previous Work

Belongie et al. [2] have introduced the shape context de-
scriptor, which characterizes a particular point location on
the shape. This descriptor is the histogram of the relative
polar coordinates of all other points. Corresponding points
on two different shapes have a similar relative position in
each shape, and will ideally have a similar shape context.
Shape context matching has been applied to a variety of ob-
ject recognition problems [2, 12]. The background clutter
in these applications was usually limited.

Sullivan and Carlsson [16] use a topology-based shape
descriptor to find correspondences. The topological type
of all combinations of four points is recorded in a voting
matrix, and one-to-one correspondences are found using a
greedy algorithm. The examples shown did not contain
significant clutter. While their topological descriptor has
higher discriminative power than the shape context, com-
puting the descriptor for all combinations of four points
is of complexity O(n*) (n number of points), and is sig-
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nificantly slower than computing shape contexts, which is
of complexity O(n?). Both methods use shape descrip-
tors without enforcing any continuity constraint, resulting
in a number of incorrect correspondences. This shortcom-
ing may sometimes be compensated by iterative alignment
and recomputation of the shape descriptor. However, this
is computationally expensive, and it would be desirable to
obtain good correspondences in the first step.

Chamfer matching was first proposed by Barrow et
al. [1] and improved versions have been used for object
recognition and contour alignment. Borgefors [4] intro-
duced hierarchical chamfer matching, in which a coarse-
to-fine search is performed using a resolution pyramid of
the image. Olson and Huttenlocher [14] use a template hi-
erarchy to recognize three dimensional objects from differ-
ent views. They also demonstrate the importance of using
oriented edge information for Hausdorff matching, which is
closely related to chamfer matching. Gavrila [8] uses cham-
fer matching to detect pedestrian shapes in real time. In this
case a template hierarchy is used to handle shape variation.

When a single template is used, chamfer matching can-
not handle large shape variations. Either multiple templates
have to be used, or, if the initial localization is good, the
shapes can subsequently be aligned using point registra-
tion. A standard method for point registration is the It-
erated Closest Point (ICP) algorithm [3, 5], where corre-
spondences are found using a nearest-neighbor assignment,
and the transformation is estimated by minimizing the ge-
ometric error between point pairs. ICP is fast and con-
verges to a local minimum. However, it requires a good
initial alignment of model and image. A number of im-
proved point registration methods have been developed re-
cently [6, 7, 10]. Fitzgibbon [7] introduced a version of
the ICP algorithm which combines the correspondence and
the alignment steps within the structure of the Levenberg-
Marquardt algorithm.

2. Methods

In this section we explain the two methods of shape context
matching and chamfer matching.

2.1. Shape Context Matching

The shape context descriptor for a point on the shape is
a histogram of the relative polar coordinates of all other
points on the shape [2]. Point correspondences between
two shapes are found by minimizing the point matching
costs, which is the x? test statistic for histograms. Glob-
ally optimal correspondences are found by minimizing the
sum of the individual matching costs. This is solved with a
bi-partite graph matching algorithm, enforcing one-to-one
point matching.

The shape context descriptor has the following invari-
ance properties.

1. Translation: The shape context descriptor is inher-
ently translation invariant as it is based on relative point lo-
cations.

2. Scale: For clutter-free images the descriptor can be
made scale invariant by normalizing the radial distances by
the mean (or median) distance between all point pairs.

3. Rotation: It can be made rotation invariant by rotat-
ing the coordinate system at each point so that the posi-
tive z-axis is aligned with the tangent vector. However, this
reduces the discriminative power of the descriptor signifi-
cantly, and is therefore not used here.

4. Shape variation: The shape context is robust towards
slight shape variations. When points in the shape vary a lot,
the discrete binning effect will lead to larger matching costs,
and wrong matches.

5. Few outliers: Points with a final matching cost larger
than a threshold value € are classified as outliers. Additional
‘dummy’ points with the cost € are introduced to make the
number of points on the two shapes equal, and the points
matched to these dummy points are also classified as out-
liers.

2.2. Chamfer Matching

The similarity between two shapes can be measured us-
ing their chamfer distance. Given the two point sets i/ =
{w;}7, and V = {v;}72,, the chamfer distance function
is the mean of the distances between each point, u; € / and
its closest point in V:

1 .
denam,-(U,V) = — > max (Eg}Hui - uj||,7> (1)

w; EU

where 7 is a threshold value, reducing the effect of outliers
and missing edges. The chamfer distance function between
two shapes can be efficiently computed using a distance
transform (DT). This transformation takes a binary feature
image as input, and assigns to each pixel in the image the
distance to its nearest feature. The chamfer cost for match-
ing a template to an edge map can then be computed as the
mean of the DT values at the template point coordinates.

Chamfer matching as proposed by Barrow et al. [1] re-
quires a good initialization of the template. In the hierar-
chical chamfer matching algorithm [4], candidate template
locations are found using by hierarchical search using a res-
olution pyramid of the image. Subsequently an aligning
transform for these candidate matches is estimated. Mul-
tiple templates are used to find three dimensional objects
in an image [8, 14]. In our experiments we use templates
which are generated by projecting a 3D hand model.

After the detection step, the best matching model is
aligned by estimating the intrinsic parameters of this 3D
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model. Levenberg-Marquardt optimization is used for
alignment, as described in [7], using the same chamfer cost
function in the transformation step as in the search step of
the algorithm.

3. Problems With Methods in Clutter

There are, however, problems with the techniques in the
presence of background clutter, which are described in the
following section.

3.1. Shape Context

It turns out that using the shape context in cluttered scenes
is unreliable. It is difficult to recover the scale parame-
ter, since normalizing the radial distances by the mean or
median point distances will no longer work. Object and
non-object points close to the object are hard to distinguish
on the basis of their shape context alone. Points which are
close to each other on the model shape are often matched to
points which are far away from each other in the image. The
iterative nature of the algorithm may sometimes be able to
compensate for this shortcoming, improving the point cor-
respondences in each step.

3.2. Chamfer Matching

When using a single template, chamfer matching cannot
handle large shape variations. The chamfer distance is not
invariant towards translation, rotation or scale. Further-
more, the number of templates needed increases with ob-
ject complexity. Each of these cases has to be handled by
matching with different templates. In order to match a large
number of templates efficiently, tree-based search methods
have been suggested, where a large number of hypotheses
can be eliminated at an early stage [8]. In scenes with clut-
tered background the chamfer cost function (1) will typi-
cally have several local minima. In order to make a deci-
sion about the object location, orientation and scale, it may
be necessary to use a subsequent verification stage [8].

4. Proposed Improvements for Shape
Context Matching

This section describes two methods of improving the ro-
bustness of point matching using shape contexts.

4.1. Using Edge Orientation

According to [8, 14] multiple feature images can be used, by
dividing edge points into discrete sets based on the edge ori-
entation. The same idea can be applied to the shape context
by only matching points with similar gradient orientation.
Figure 1 shows an example of estimating point correspon-
dences when using single versus multiple features. Using

Figure 1: Shape context matching is improved by using
edge orientation. Finding correspondences by (left) match-
ing all edge points (original method), (right) matching edge
points with similar gradient direction only. The lighter col-
ored points are matched to ‘dummy’ points and are classi-
fied as outliers.

multiple edge features increases the discrimination power
of the shape context, and generally leads to improved re-
sults. However, as can be seen in figure 1, also with multiple
features, incorrect matches can occur.

4.2. Shape Context With Figural Continuity

The shape context descriptor alone is not powerful enough
to yield reliable point correspondences in cluttered scenes.
We propose incorporating a continuity constraint in the cor-
respondence estimation. The idea is that neighboring points
on the model shape ¢/, u; and u;;, should map to points v 4;
and v ;) on the target shape V which are also close to each
other. The correspondences are denoted by a function ¢
which maps each model point index to the corresponding
image point index. The cost function for ¢ is given by

C¢ (u7 V) = Csc (u7 V) +A Ccont (Z’{a V) + 1 Ccurv (Z’{a V)
2
where C. are the shape context costs, Copnt 1S a continu-
ity cost term, Cy i @ curvature cost term and A and p
are weighting parameters. The shape context costs are, as
before, the sum of all individual point matching costs

sc u V chc Wi, V(i) 3)
The continuity cost term should ensure that two points
which are close on the model shape are close in the image.
Assuming that u; and u;_; are neighboring points:

Ceont(U, V) = Z||v¢ — (-1l )

The curvature cost term will have low costs if the corre-
sponding points have similar curvature energy

Ccurvu V ZH’/‘: u; _vab())” )
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Algorithm 1 Viterbi Algorithm for Point Correspondences

1: Compute the shape context costs C's.(4,7) Vi, J
2: Initialization
Co(L,4) = Cee(1,§) j=1,...m
3: Propagation
For each model pointu; ¢=2,....,n
For each feature pointv; j=1,...,m
Fork=1,...m

Cg(i,§) = Co(i = L, k) + Csc(i, §) + A[vie — v,
+ pllk(vi) = £(aim)| (©)
Compute the costs of assigning u; to v; as
Co(i,§) = min C} (i, )
Store a pointer to the previous correspondence index
P(i,j) = arglinin C’g(i,j)

4: Termination
Assign the point with optimal costs to u,,
#(up) =min; Cy(n,j) j=1,...m

5. Optimal Path Backtracking
Find the other correspondences by

Qs(uz) :P(¢(i7ui+1)) i :n_]-;"'a]-

where k is the curvature energy at the point, k(u;) =
[lui—1 — 2u; + u;41||. Finding the minimum of this cost
function is generally expensive. However, in the case when
an ordering of the model point is given, this function can be
optimized using dynamic programming. Writing the pos-
sible point assignments into a matrix, we use the Viterbi
algorithm to find a path through this matrix which mini-
mizes the total cost for its correspondences (algorithm 1).
Figure 2 shows the results of the proposed method com-
pared to the original version (using only shape context and
bi-partite matching). The figure shows matches after the
first correspondence step (no aligning transformation has
been applied). The matches found by the original method
do not obey the continuity constraint, whereas correspon-
dences found by Viterbi are clearly better. We use the same
scale, obtained from the model shape, to compute all shape
contexts. The method is therefore not scale invariant, but
in practice can handle some degree of scale variation. The
Viterbi approach does depend on there being contours that
can be followed in edge images, which not always the case.
In order to deal with discontinuous edges, a ‘dummy’ point
is added to which model points are matched to, as long as
there are no good edge point candidates. Other optimiza-
tion methods could be used to minimize the cost function
in equation 2, which do not rely on sequential contour fol-

lowing. The algorithm, as described here, is designed for
the case when an ordering of the model points is given. If
this is not the case, for example, when edges branch off or
merge, the continuity term has to be modified, still ensuring
that two points that are close on the model are also nearby
in the image.

It is interesting to note that the continuity and curvature
terms are similar to the energy terms used in active contour
models [11]. The model used here can therefore be char-
acterized as a snake with integrated shape information. In
fact, the algorithm is independent of the particular shape
descriptor.

5. Results

To compare the algorithms, we show results on two types
of data, images of hands in cluttered scenes, and words on
textured background.

5.1. Initializing a Hand Model

We use shape matching to locate a hand in an image and
estimate a set of shape parameters of a 3D hand model [15].
This is the initialization step in a model-based hand tracker,
where automatic initialization and adaptation to the user
is required. The 15 model parameters to be estimated are
translation and rotation in the image plane (3), scale (1), the
angles between fingers and palm (5), the finger lengths (5)
and a width parameter for all fingers (1). The user is re-
quired to hold the open hand parallel to the image plane.
The problem of parameter estimation is underdetermined
when using a single view, however, the method extends to
multiple views, similar to [9]. The image feature points are
Canny edges, the model points are the projected contours.
Skin color information is not used.

In the case of shape context matching, correspondences
are found only once. The parameters of the aligning
3D transformation are then estimated using Levenberg-
Marquardt optimization. In the case of chamfer match-
ing, the hand is first localized using a coarse-to-fine search
in image translation and scale space. The model is then
aligned using a version of the ICP algorithm which employs
Levenberg-Marquardt optimization [7]. The error function
for both global search and alignment are defined using the
chamfer distance. The discriminative power of the error
function is enhanced by using oriented edges (discretized
into 8 regions). For the results shown we use 147 templates,
using 7 rotation angles in the image plane, 7 different scales
and 3 shape variations. Figure 3 shows results of hand lo-
calization experiments under a number of different lighting
situations and with significant background clutter. It can be
seen that matching using the shape context with continu-
ity constraint (middle column) as well as chamfer match-
ing (right column) give good results in the shown cases,
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(@) (b)

(d) ©)

Figure 2: Shape context matching is improved by using shape continuity. Correspondences found between edge points
and points on hand template in the cases of (a) correct scale, (b) scale variation, (c) rotation, (d) shape variation, (e) back-
ground clutter. Top: input images, middle: results of the original method, using shape context and bi-partite matching,
bottom: results of shape context combined with continuity constraint, computed with Viterbi. The results shown are the cor-
respondences found after a single matching step without iteration. Even in relatively simple cases the original shape context
method finds many wrong matches, whereas the introduction of the continuity constraint leads to improved correspondences.

whereas matching using the shape context alone (left col-
umn) does not work for other than relatively simple back-
grounds. Figure 4 shows a typical failure mode of the shape
context matching using Viterbi, while chamfer matching
still produces reasonable results. The underlying reason for
the failure is that when the shape context information is un-
reliable due to clutter or variations in scale and shape, the
continuity constraint may not be able to compensate for this.
In the example the edges in the background have a shape
context similar to the model points of the thumb, and hence
a wrong path along the contour is chosen. The number of
template points is about 200, the number of sampled edge
points in the image is typically 1000-2000. The time until
detection is approximately 10s for the original shape con-
text version, 20s for Viterbi and 6s for chamfer matching
(on a Pentium I11, 1.0 GHz).

5.2. Word Recognition in Cluttered Images

We use chamfer matching for recognizing words in im-
ages generated by the EZ-Gimpy program. These are
word images (from a dictionary containing 561 words) cor-
rupted with different types of image noise, deformations or
background texture. Automatic recognition is made diffi-
cult specifically for the task to tell humans and comput-
ers apart [17]. Mori and Malik [13] have obtained a word
recognition rate of 82.7% on 191 EZ-Gimpy images. Their
method is based on matching letters using shape contexts
and thin plate spline transformations. This method has pre-
viously been applied successfully to the clutter free MNIST
data set of handwritten digits [2]. Tri-gram matching is
used to extract candidate words, for which then a final shape
matching score is computed.

We conduct two experiments, using one and two tem-
plates per letter. As a preprocessing step, the images are
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first binarized using simple thresholding. We compute the
symmetric chamfer cost between templates and image at
each location in an exhaustive manner. Local cost minima
are hypothesized letter locations. The symmetric chamfer
cost is used because it allows discrimination between two
letters, where one letter shape is part of the other one, for
example ‘0’ and ‘p’. In contrast to section 5.1, no further
optimization is performed. Subsequently we compute the
matching cost for each word in the dictionary. We also use
the knowledge that the letter distance within a word has low
variance. The word matching cost is the average symmet-
ric chamfer distance of the letters and the variance of letter
distances in the x and y direction. On the same test set
used by Mori and Malik, we obtain a recognition rate of
89.5% when using one template and 93.2% when using two
templates per letter (an additional sheared version of each
template). Figure 5 shows examples of matching results.
Images with an incorrect top match, are mostly distorted by
a ‘whirl’ or ‘wave’ transformation (last two rows in figure
5). A further optimization step may improve the results.

6. Summary and Conclusions

We have presented an empirical study of two different meth-
ods for object localization from edges in cluttered scenes —
shape context and chamfer matching. The results demon-
strate that the original shape context algorithm fails in heav-
ily cluttered scenes, where it is no longer robust towards
variations in scale or rotation. By including contour con-
tinuity and curvature information, similar to those used in
active contour models, it is possible to obtain significantly
better correspondences and model alignment results. If a
point ordering is given for the model, the joint cost function
can be optimized using the Viterbi algorithm.

When using the same number of templates, shape con-
text matching can handle larger shape variations than cham-
fer matching. However, when shape context matching
fails, the incorrect correspondences often lead to bad align-
ment, and subsequent optimization fails to find the the cor-
rect transformation. Failure cases in chamfer matching
are mainly due to false positive matches during the global
search phase. The results may be improved by including a
hypothesis verification step. Our experiments have shown
that chamfer matching is more robust in clutter than shape
context matching, even with the suggested improvements.
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Figure 3: Results of hand localization. Left column: hand
localization using shape context information only (original
algorithm), middle column: shape context with continuity
constraint, right column: chamfer matching and LM-ICP.

(a) (b)

(©)

Figure 4: Failure case for shape context matching. (a)
Edge points and model points. Edge points matched us-
ing Viterbi are black, (b) alignment using Viterbi, (c) using

chamfer matching.
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Figure 5: Word recognition results. Examples of recog-
nized words in EZ-Gimpy images. The top six matches for

each word and their cost are shown.
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