Problem 1. (2 points)
Let \(A = \{ x : x \in \mathbb{Z} \text{ and } x \leq 0 \} \). Circle all that you think are correct:
 (b) \(0 \in A \)
 (d) \(-1118 \in A \)

Problem 2. (2 points)
Which other way(s) can we write the set \(B = \{1, 2, 3, 4, 5\} \)? Circle all that you think are correct:
 (b) \(B = \{ x : x \in \mathbb{N} \text{ and } x \leq 5 \} \)
 (d) \(B = \{ x : x \in \mathbb{N} \text{ and } x < 6 \} \)

Problem 3. (2 points)
Suppose that \(A = \{1, 2, 3\}, B = \{3, 2, 1, 14\}, \) and \(C = \{0, 1, 14, 2\} \). Circle all that you think are correct:
 (c) \(\emptyset \subseteq A \)
 (d) \(A \subseteq B \)

Problem 4. (2 + 2 = 4 points)
Let \(D = \{4, -13\} \). What is \(|D| \)? Write down the power set of \(D \).
 \(|D| = 2 \). Power set of \(D \) is \(\{ \emptyset, \{4\}, \{-13\}, \{4, -13\} \} \).

Problem 5. (2 + 2 = 4 points)
Let universal set \(U = \{\text{apple, orange, grape, plum, chocolate}\} \).
Let \(X = \{\text{apple, orange}\} \), and \(Y = \{\text{chocolate}\} \). Write down \(X' \) and \(Y' \).

 \(X' = \{\text{grape, plum, chocolate}\} \). \(Y' = \{\text{apple, orange, grape, plum}\} \).
Problem 6. (2 points)
Represent the elements floyd, doors, doors, beatles, carpenters, doors, beatles as a multi-set.

\[\{ (floyd, 1), (doors, 3), (beatles, 2), (carpenters, 1) \} \].

Problem 7. (Boolean Algebra) (5 points)
If Boolean variable \(A = F \), \(B = T \), and the value of \(C \) is unknown,

(a) What is the value of \(\sim (\sim A) \)? \(F \)

(b) What is the value of \(A.T \)? \(F \)

(c) What is the value of \(C.F \)? \(F \)

(d) What is the value of \(B + B \)? \(T \)

(e) What is the value of \(C + \sim C \)? \(T \)

Problem 8. (Boolean Algebra) (2 + 2 = 4 points)
Suppose Google comes to the PSU campus for internship interviews. Let us say, that for any PSU student, a Boolean variable \(A \) implies “GPA > 3.0”, \(B \) implies “Major is IST”, and \(C \) implies “Eats, drinks, and thinks Google”.

Example: \(A + B \) implies “Either has a GPA > 3.0 or is an IST Major”.

(a) What does the expression \(A.\sim C \) imply ?

Has GPA > 3.0 and does not eat, drink, think Google
(Variations that essentially mean the same thing are acceptable)

(b) If Google wishes to interview all students who either have a GPA of less than or equal to 3.0 or those IST majors who eat, drink, and think Google, what Boolean expression is appropriate ?

\(\sim A + (B.C) \) OR \(\sim A + B.C \) (both acceptable)