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Abstract

The automatic inference of image semantics is an important but highly challenging
research problem whose solutions can greatly benefit content-based image search
and automatic image annotation. In this thesis, I present algorithms and sta-
tistical models for inferring image semantics and aesthetics from visual content,
specifically aimed at improving real-world image search. First, a novel approach
to automatic image tagging is presented which furthers the state-of-the-art in both
speed and accuracy. The direct use of automatically generated tags in real-world
image search is then explored, and its efficacy demonstrated experimentally. An
assumption which makes most annotation models misrepresent reality is that the
state of the world is static, whereas it is fundamentally dynamic. I explore learning
algorithms for adapting automatic tagging to different scenario changes. Specifi-
cally, a meta-learning model is proposed which can augment a black-box annotation
model to help provide adaptability for personalization, time evolution, and con-
textual changes. Instead of retraining expensive annotation models, adaptability
is achieved through efficient incremental learning of only the meta-learning com-
ponent. Large scale experiments convincingly support this approach. In image
search, when semantics alone yields many matches, one way to rank images fur-
ther is to look beyond semantics and consider visual quality. I explore the topic of
data-driven inference of aesthetic quality of images. Owing to minimal prior art,
the topic is first explored in detail. Then, methods for extracting a number of high-
level visual features, presumed to have correlation with aesthetics, are presented.
Through feature selection and machine learning, an aesthetics inference model
is trained and found to perform moderately on real-world data. The aesthetics-
correlated visual features are then used in the problem of selecting and eliminating
images at the high and low extremes of the aesthetics scale respectively, using a
novel statistical model. Experimentally, this approach is found to work well in
visual quality based filtering. Finally, I explore the use of image search techniques
for designing a novel image-based CAPTCHA, a Web security test aimed at distin-
guishing humans from machines. Assuming image search metrics to be potential
attack tools, they are used in the loop to design attack-resistant CAPTCHAs.
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Chapter 1
Introduction

The word ‘semantics’, in the context of this dissertation, refers to the linguistic

interpretation of media such as images and video. The human mind, through

years of real-world experience and interactions, usually finds it natural to interpret

images or summarize video clips. However, the aggregate size of the image and

video collections of the world has been growing at a phenomenal rate [155, 174],

making it infeasible to manually interpret every entity. For example, it is reported

in [174] that the annual production of images is ∼ 80 billion, and home videos is ∼
1.4 billion. Furthermore, Web portals such as Flickr, Facebook, and YouTube have

made it easier than ever before to upload personal collections to public repositories,

spearheading an explosion of user-generated content.

The scale of these media collections poses new problems for information re-

trieval. A key problem is to be able to organize and search them based on se-

mantics. This is relatively easy in the presence of reliable, manually generated

semantics data. The present day image search engines such as those owned by

Yahoo! and Google, rely mainly on the text in the vicinity of the images in order

to infer semantics. Much of these images come without explicit semantic tags, and

those inferred from surrounding text are often unreliable. Therein lies the need to

automatically infer semantics from visual content, to either facilitate semantics-

based search directly, or to generate meaningful tags. In order to be useful in

the real-world, it is preferable for automatic inference to be scalable and accurate.

Additional desiderata of future information retrieval systems include the ability

to recognize and leverage information deeper than semantics, such as emotional
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response. For example, given the ever-expanding size of image repositories, many

images share very similar semantics. A retrieval system for images can potentially

enhance the user experience by re-ranking images based on inferred aesthetic value.

1.1 Semantic and Aesthetic Gaps

The technical challenges involved with semantics recognition have been formalized

lucidly in relevant literature. An important formalization is the concept of semantic

gap proposed by Smeulders et al. [242], which is defined as follows:

The semantic gap is the lack of coincidence between the information

that one can extract from the visual data and the interpretation that

the same data have for a user in a given situation.

In simpler terms, it usually implies the inability of current technology to com-

pletely understand the semantics of multimedia objects in general, and images

in particular. Similarly, the technical challenge involved with inferring aesthetic

quality from visual content of images can be formalized by the concept of aesthetic

gap which is introduced in this dissertation, and defined analogously as follows:

The aesthetic gap is the lack of coincidence between the information

that one can extract from low-level visual data (i.e., pixels in digital

images) and the interpretation of emotions that the visual data may

arouse in a particular user in a given situation.

Again, in simpler terms, the aesthetic gap refers to the inability of current tech-

nology to infer the aesthetic quality of an image as perceived by an individual or

collectively by a group of individuals. A high level conceptual view of these gaps

is presented in Fig. 1.1.

The ability to overcome these technical challenges, partially or completely, is

often referred to as the ‘bridging’ of these gaps. There have been many attempts

in the past [58, 242] to bridge the semantic gap, but little to no formal attempt at

bridging the aesthetic gap has been made. The latter is arguably a harder technical

challenge, starting with the lack of a concrete definition of what constitutes ground-

truth aesthetic quality of images. A major focus of this dissertation is on ways to

bridge the semantic and aesthetic gaps.
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Figure 1.1. A high level overview, of contributions made in this dissertation, is shown
here. At its core reside the concepts of semantic and aesthetic gaps. A significant
contribution of this work involves attempts to ‘bridge’ these gaps in the form of inferring
semantics and aesthetics of natural images. This work also addresses the fact that
semantic gap is essentially dynamic in the real world. The semantic gap can be exploited
for solving an orthogonal problem in Web security, which is another contribution of this
dissertation.

If we revisited the definition of semantic gap, we would realize that in real-

world contexts, it is in fact dynamic in nature. The information that one can

extract from the visual data for a one-time trained image recognition model does

not change, but on the other hand, the interpretation that the same data have

for a user in a given situation changes across users as well as situations. Hence

in real-world implementations, the algorithms really should attempt to bridge the

dynamic semantic gap, a concept not explored in the existing literature. While

similar arguments apply to the aesthetic gap as well, this dissertation focuses on

the dynamic nature only of the semantic gap.
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1.2 Contributions and their Significance

The contributions made in this dissertation can be summarized at a high level

in terms of ‘bridging of gaps’ (see Fig. 1.1), or they can be broken down into a

detailed set of accomplishments. I begin with a high level perspective and then go

on to spell out the details. Very broadly, my contributions can be summarized by

the following points:

1. Pushing the frontier in bridging the semantic gap;

2. Formalizing the concept of aesthetic gap and proposing to bridge it; and

3. Exploiting the semantic gap to solve a problem in information security.

The complete elimination of the semantic or aesthetic gaps through technological

advancements is very ambitious, and very unlikely to happen in the near future.

Instead, my claim in this work is to have narrowed these gaps, which translates to

performance improvements in relevant real-world applications.

At a more detailed level, in this dissertation I present algorithms and statistical

models for inferring image semantics and aesthetics from visual content, specifically

aimed at improving image search and tagging. Content-based image search and

automatic tagging are real-world applications, and the bridging of the semantic and

aesthetic gaps are merely ways to improve the user experience in these applications.

I now present details of the specific contributions made in this dissertation.

A note on terminology:

Throughout this dissertation, I use certain sets of phrases or terms interchangeably.

This is partly because there is a lack of consistency in terminology within the

research community as well, since they refer to the same concepts. In particular,

I consider the sets of phrases {‘image search’, ‘image retrieval’, ‘content-based

image retrieval’, ‘CBIR’} , then {‘image annotation’,‘image tagging’}, and finally

{‘aesthetic value’, ‘visual quality’}, to be equivalence sets in terms of semantics.
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1.2.1 A Thorough Study of State-of-the-art

To start with, so as to put the contributions of this work into perspective, I present

a thorough survey on relevant research topics, in particular the recent research ef-

forts at bridging the semantic gap for image categorization, retrieval, automatic

image tagging, and related new-age problems such as aesthetics inference. We

recap progress made in the previous decade, cover progress being made in the

current decade (in great technical detail), make conjectures about emerging direc-

tions, and discuss the spawning of new fields of research as a result of these efforts.

The recent publication trends in this area of research, and their impact on related

fields of study, are presented as well.

Significance:

• The thorough survey of the state-of-the-art in image retrieval and automatic

annotation presented here is more comprehensive and up-to-date than other

existing surveys on the topic. It not only helped me decide on topics worthy

of exploration and to make novel contributions, but it will also likely serve

as an importance reference for the research community.

1.2.2 Improved Bridging of the Semantic Gap

The main contributions of this dissertation start with an effort to improve the

state-of-the-art in bridging the semantic gap for the purpose of image search. In

particular, an approach to automatic tagging of images is presented which furthers

the state-of-the-art in both speed and accuracy. This involves a novel structure-

composition model which helps perform image categorization better than previ-

ously proposed algorithms, which is a key step in our automatic tagging approach.

The direct use of automatically generated tags in image search under various real-

world scenarios is then explored. Referred to as the ‘bridging’ of the annotation-

retrieval gap, its efficacy is shown through extensive experiments.
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Significance:

• The algorithm for automatic tagging presented here is an improvement in

training time, inference time, and in the accuracy of tagging, as compared to

current approaches. It brings automatic image tagging a step closer to real-

world implementation, where efficiency and performance are both critical.

• The proposed structure-composition model appears to model challenging im-

age categories well, which leads to improved categorization performance over

existing approaches. This model may therefore find application in other im-

age recognition problems as well.

• The use of automatic annotation directly for image search has not been

explored prior to this work, an approach which shows considerable promise

and produces some surprising non-intuitive results. This gives direct evidence

that content recognition can help provide access to unlabeled images without

changing query modality, sticking to the keyword search paradigm.

1.2.3 Bridging the Dynamic Semantic Gap

One issue with using automatic tagging for real-world image search is that most

existing models assume that ground-truth image tags come from a fixed vocab-

ulary, are absolute over time, and are universally acceptable by various people,

which make the models misrepresent the dynamic nature of the real world. The

association between images and their semantic tags changes with context, over

time, and across people, which makes the semantic gap itself dynamic. Thus, al-

gorithms for bridging the semantic gap should adapt to changes, but this idea has

not been pursued extensively in the past. I explore learning algorithms for adapt-

ing automatic image annotation to such dynamism. A meta-learning model called

PLMFIT is proposed, which can augment a black-box annotation model to help

provide the requisite adaptability to handle contextual changes, time evolution,

and personalization. Instead of re-training expensive image tagging models, effi-

cient adaptability is achieved through incremental learning of only the lightweight

meta-learning component. Strongly positive empirical results suggest that meta-

learning is very promising in bringing adaptability to image tagging.
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Significance:

• The idea of using a meta-learning layer to improve performance of an an-

notation system is novel and empirically found to produce very significant

performance improvements. By itself, even without the dynamism in tagging

environment, inductive transfer helps PLMFIT in pushing the state-of-the-

art in automatic tagging performance.

• Our model is tested successfully on real-world data in which image tagging

trends are found to change over time, and users are found to vary in their

tagging preferences. This makes it the first annotation model to perform

effective adaptation over time and personalization on real users.

• The efficiency and performance achieved through the meta-learning layer

makes it realistic to implement computationally intensive annotation systems

(e.g., Alipr [166]) within public photo-sharing environments like Flickr.

1.2.4 Formalizing and Bridging the Aesthetic Gap

In image search, when semantics alone yields many relevant matches, ordering

them by visual quality can be beneficial. I explore the topic of data-driven infer-

ence of visual quality or ‘aesthetic value’ of images. Given the highly subjective

nature of this problem, I focus specifically on building data-driven models for aes-

thetics inference, posing it as a machine learning problem. Owing to minimal prior

art, the topic is first explored in great detail, presenting definitions, scope, prob-

lems, of interest, and datasets available for training. Then, methods for extracting

a number of high-level visual features, presumed to have correlation with aesthet-

ics, are presented. Through feature selection and machine learning, an aesthetics

inference model is trained and found to perform moderately on real-world data.

The aesthetics-correlated visual features are then used in the problem of selecting

and eliminating images at the high and low extremes of the aesthetics scale re-

spectively, using a novel statistical model. Experimentally, this approach is found

to work well in tasks such as visual quality filtering of image search results.
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Significance:

• The section on fundamentals presents concrete definitions, problems of in-

terests, and pointers to datasets which can be used for empirical validation.

This will serve as a key reference for this emerging area of study.

• Ours is among the first formal studies on computational inference of aes-

thetics. Despite aesthetics being considered very challenging to model, our

experiments yield moderate results, giving hope for further advances.

• Even though the direct inference of aesthetic value of images produces only

moderate results, when applied to some realistic related problems, very en-

couraging results are generated. This implies that the inference model need

not be perfect in order to be applicable to the real world.

1.2.5 Exploiting the Semantic Gap for Enhanced Security

As mention before, based on past literature and current progress, it is safe to as-

sume that the semantic gap will not be completely eliminated in the near future.

This fact can be exploited for the purpose of enhancing system security. Specifi-

cally, image recognition problems can be used as CAPTCHAs, tests to distinguish

humans from machines to alleviate various Web security problems. I explore the

use of image search techniques for designing a novel image-based CAPTCHA. Such

a test helps prevent automatic brute-force network attacks by forcing human in-

tervention. Image recognition based CAPTCHAs have emerged as attractive new

alternatives to the (presently dominant) text-based systems. While these are per-

ceived to be harder to defeat than text recognition tests, there is still the risk of

defeat by image analysis techniques. Assuming image search metrics to be poten-

tial attack tools, I use them in the loop to design an attack-resistant CAPTCHA

system. In other words, the goal is to design image recognition CAPTCHAs which

face low risk of attack from the existing techniques which attempt to bridge the

semantic gap.
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Significance:

• An understanding of (a) the semantic gap for images and (b) approaches to

bridging it, positions us well strategically for designing the IMAGINATION

system, an attack resistant CAPTCHA system. The basic design principle

presented here can be used to extend it further as and when new innovation

in bridging the semantic gap comes along. A public demonstration of this

system is currently available at http://alipr.com/captcha.

• The study also helps to reveal (a) robustness of current image search metrics

to certain artificial distortions, and (b) limitations in dealing with certain

other kinds of distortions. This may potentially help design improved, more

robust image search metrics in the future.

1.3 Organization of this Dissertation

To start with, so as to put the contributions into perspective, I present a thorough

survey on relevant research topics, in Chapter 2. The topics covered include image

search, automatic image tagging, image aesthetics inference, and related new-age

applications. The main contributions of this dissertation start with Chapter 3.

In this chapter, a novel approach for automatic tagging of images is presented

which furthers the state-of-the-art in both speed and accuracy. The direct use of

automatically generated tags in image search under various real-world scenarios

is then explored. In Chapter 4, I explore learning algorithms for adapting au-

tomatic image annotation to different scenario changes. A meta-learning model

called PLMFIT is proposed, which can augment a black-box annotation model

to help provide the requisite adaptability to handle contextual changes, time evo-

lution, and personalization. In image search, when semantics alone yields many

relevant matches, ordering them by visual quality can be beneficial. I explore the

topic of data-driven inference of visual quality or ‘aesthetic value’ of images in

Chapter 5, covering the fundamentals, an approach to inference, and an appli-

cation of the inference model. Finally, in Chapter 6, I explore the use of image

search techniques for designing a novel image-based CAPTCHA, a Web security

test aimed at distinguishing humans and machines. I conclude in Chapter 7 with
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summarizing remarks, a discussion on directions that the presented research topics

can take hereon, and a general discussion on the future of image search.

In addition to this, Appendix A presents publication trends and impact of

image search research, in connection with the survey in Chapter 2. Appendix B

presents details and proof on the orthogonal partition generator component of the

IMAGINATION system described in Chapter 6.



Chapter 2
Image Search, Annotation,

Aesthetics: State of the Art

We have witnessed great interest and a wealth of promise in content-based image

retrieval as an emerging technology. While the last decade laid foundation to such

promise, it also paved the way for a large number of new techniques and systems,

got many new people involved, and triggered stronger association of weakly related

fields. In this chapter, we survey key theoretical and empirical contributions in

the current decade related to image retrieval and automatic image annotation, and

discuss the spawning of related sub-fields in the process, such as image aesthetics

inference and image-based security systems. We also discuss significant challenges

involved in the adaptation of existing image retrieval techniques to build systems

that can be useful in the real-world. In retrospect of what has been achieved so

far, we also conjecture what the future may hold for image retrieval research.

2.1 Introduction

What Niels Henrik David Bohr exactly meant when he said “Never express yourself

more clearly than you are able to think” is anybody’s guess. In light of the current

discussion, one thought that this well-known quote evokes is that of subtle irony;

there are times and situations when we imagine what we desire, but are unable

to express this desire in precise wording. Take, for instance, a desire to find the

perfect portrait from a collection. Any attempt to express what makes a portrait
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‘perfect’ may end up undervaluing the beauty of imagination. In some sense,

it may be easier to find such a picture by looking through the collection and

making unconscious ‘matches’ with the one drawn by imagination, than to use

textual descriptions that fail to capture the very essence of perfection. One way to

appreciate the importance of visual interpretation of picture content for indexing

and retrieval is this.

Our motivation to organize things is inherent. Over many years we learned that

this is a key to progress without the loss of what we already possess. For centuries,

text in different languages has been set to order for efficient retrieval, be it manually

in the ancient Bibliotheke, or automatically as in the modern digital libraries. But

when it comes to organizing pictures, man has traditionally outperformed machines

for most tasks. One reason which causes this distinction is that text is man’s

creation, while typical images are a mere replica of what man has seen since birth,

concrete descriptions of which are relatively elusive. Add to this the theory that

the human vision system has evolved genetically over many centuries. Naturally,

the interpretation of what we see is hard to characterize, and even harder to teach

a machine. Yet, over the past decade, ambitious attempts have been made to make

computers learn to understand, index and annotate pictures representing a wide

range of concepts, with much progress.

Content-based image retrieval (CBIR), as we see it today, is any technology

that in principle helps organize digital picture archives by their visual content.

By this definition, anything ranging from an image similarity function to a robust

image annotation engine falls under the purview of CBIR. This characterization

of CBIR as a field of study places it at a unique juncture within the scientific

community. While we witness continued effort in solving the fundamental open

problem of robust image understanding, we also see people from different fields,

e.g., computer vision, machine learning, information retrieval, human-computer

interaction, database systems, Web and data mining, information theory, statistics,

and psychology contributing and becoming part of the CBIR community [276].

Moreover, a lateral bridging of gaps between some of these research communities

is being gradually brought about as a by-product of such contributions, the impact

of which can potentially go beyond CBIR. Again, what we see today as a few cross-

field publications may very well spring into new fields of study in the future.



13

Amidst such marriages of fields, it is important to recognize the shortcomings

of CBIR as a real-world technology. One problem with all current approaches

is the reliance on visual similarity for judging semantic similarity, which may be

problematic due to the semantic gap [242] between low-level content and higher-

level concepts. While this intrinsic difficulty in solving the core problem cannot be

denied, we believe that the current state-of-the-art in CBIR holds enough promise

and maturity to be useful for real-world applications, if aggressive attempts are

made. For example, Google and Yahoo! are household names today, primarily

due to the benefits reaped through their use, despite the fact that robust text un-

derstanding is still an open problem. Online photo-sharing has become extremely

popular with Flickr [88] which hosts hundreds of millions of pictures with diverse

content. The video sharing and distribution forum YouTube has also brought in

a new revolution in multimedia usage. Of late, there is renewed interest in the

media about potential real-world applications of CBIR and image analysis tech-

nologies [233, 68, 48]. We envision that image retrieval will enjoy a success story in

the coming years. We also sense a paradigm shift in the goals of the next-generation

CBIR researchers. The need of the hour is to establish how this technology can

reach out to the common man the way text-retrieval techniques have. Methods

for visual similarity, or even semantic similarity (if ever perfected), will remain

techniques for building systems. What the average end-user can hope to gain from

using such a system is a different question altogether. For some applications, vi-

sual similarity may in fact be more critical than semantic similarity. For others,

visual similarity may have little significance. Under what scenarios a typical user

feels the need for a CBIR system, what the user sets out to achieve with the sys-

tem, and how she expects the system to aid in this process, are some of the key

questions that need to be answered in order to produce a successful system design.

Unfortunately, user studies of this nature have been scarce so far.

Comprehensive surveys exist on the topic of CBIR [1, 224, 242, 247], all of which

deal primarily with work prior to the year 2000. Surveys also exist on closely related

topics such as relevance feedback [320], high-dimensional indexing of multimedia

data [19], face recognition [313] (useful for face based image retrieval), applications

of CBIR to medicine [198], and applications to art and cultural imaging [39].

Multimedia information retrieval, as a broader research area covering video, audio,
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image, and text analysis has been extensively surveyed [235, 157]. In our current

survey, we restrict the discussion to image-related research only.

One of the reasons for writing this survey is that CBIR, as a field, has grown

tremendously after the year 2000 in terms of the people involved and the papers

published. Lateral growth has also occurred in terms of the associated research

questions addressed, spanning various fields. To validate the hypothesis about

growth in publications, we conducted a simple exercise. We searched for publica-

tions containing the phrases “Image Retrieval” using Google Scholar [100] and the

digital libraries of ACM, IEEE and Springer, within each year from 1995 to 2005.

In order to account for (a) the growth of research in computer science as a whole

and (b) Google’s yearly variations in indexing publications, the Google Scholar re-

sults were normalized using the publication count for the word “computer” for that

year. A plot on another young and fast-growing field within pattern recognition,

support vector machines (SVM), was generated in a similar manner for comparison.

The results can be seen in Fig. 2.1. Not surprisingly, the graph indicates similar

growth patterns for both fields, although SVM has had faster growth. These trends

indicate, given the implicit assumptions, a roughly exponential growth in interest

in image retrieval and closely related topics. We also observe particularly strong

growth over the last five years, spanning new techniques, support systems, and

application domains.

In this chapter, we comprehensively survey, analyze, and quantify current

progress and future prospects of image retrieval. A possible organization of the

various facets of image retrieval as a field is shown in Fig. 2.2. Note that the

treatment is limited to progress mainly in the current decade, and only includes

work that involves visual analysis in part or full. For the purpose of completeness,

and better readability for the uninitiated, we have introduced key contributions

of the earlier years in Sec. 2.1.1. Image retrieval purely on the basis of textual

meta-data, Web link structures, or linguistic tags is excluded.

2.1.1 The Early Years

The years 1994-2000 can be thought of as the initial phase of research and devel-

opment on image retrieval by content. The progress made during this phase was
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lucidly summarized at a high-level in [242], which has had a clear influence on

progress made in the current decade, and will undoubtedly continue to influence

future work. Therefore, it is pertinent that we provide a brief summary of the

ideas, influences, and trends of the early years (a large part of which originate in

that survey) before describing the same for the new age. In order to do so, we
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first quote the various gaps introduced there that define and motivate most of the

related problems:

• The sensory gap is the gap between the object in the world and the infor-

mation in a (computational) description derived from a recording of that

scene.

• The semantic gap is the lack of coincidence between the information that one

can extract from the visual data and the interpretation that the same data

have for a user in a given situation.

While the former makes recognition from image content challenging due to lim-

itations in recording, the latter brings in the issue of a user’s interpretations of

pictures and how it is inherently difficult for visual content to capture them. We

continue briefly summarizing key contributions of the early years that deal with

one or more of these gaps.

In [242], the domains for image search were classified as narrow and broad, and

to date this remains an extremely important distinction for the purpose of system

design. As mentioned, narrow image domains usually have limited variability
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and better-defined visual characteristics (e.g., aviation related pictures [2]), which

makes content-based image search a tad bit easier to formulate. On the other

hand, broad domains tend to have high variability and unpredictability for the

same underlying semantic concepts (e.g., Web Images), which makes generalization

that much more challenging. As recently noted in [121], narrow and broad domains

pose a problem in image search evaluation as well, and appropriate modifications

must be made to standard evaluation metrics for consistency. The survey also lists

three broad categories of image search, (1) search by association, where there is

no clear intent at a picture, but instead the search proceeds by iteratively refined

browsing , (2) aimed search, where a specific picture is sought, and (3) category

search, where a single picture representative of a semantic class is sought, for

example, to illustrate a paragraph of text, as introduced in [50]. Also discussed

are different kinds of domain knowledge that can help reduce the sensory gap in

image search. Notable among them are concepts of syntactic similarity, perceptual

similarity, and topological similarity. The overall goal therefore remains to bridge

the semantic and sensorial gaps using the available visual features of images and

relevant domain knowledge, to support the varied search categories, ultimately to

satiate the user.

In the survey, extraction of visual content from images is split into two parts,

namely image processing and feature construction. The question to ask here is

what features to extract that will help perform meaningful retrieval. In this con-

text, search has been described as a specification of minimal invariant conditions

that model the user intent, geared at reducing the sensory gap due to acciden-

tal distortions, clutter, occlusion, etc. Key contributions in color, texture, and

shape abstraction have then been discussed. Among the earliest use of color his-

tograms for image indexing was that in [249]. Subsequently, feature extraction

in systems such as QBIC [87], Pictoseek [94], and VisualSEEK [245] are notable.

Innovations in color constancy, the ability to perceive the same color amidst en-

vironmental changes, were made by including specular reflection and shape into

consideration [85]. In [120] color correlograms were proposed as enhancements to

histograms, that take into consideration spatial distribution of colors as well. Ga-

bor filters were successfully used for local shape extraction geared toward matching

and retrieval in [184]. Daubechies’ wavelet transforms were used for texture feature
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extraction in the WBIIS system [279]. Viewpoint and occlusion invariant local fea-

tures for image retrieval [231] received significant attention as a means to bridge

the sensorial gap. Work on local patch-based salient features [262] found promi-

nence in areas such as image retrieval and stereo matching. Perceptual grouping

of images, important as it is for identifying objects in pictures, is also a very

challenging problem. It has been categorized in the survey as strong/weak seg-

mentation (data-driven grouping), partitioning (data-independent grouping, e.g.,

fixed image blocks), and sign location (grouping based on a fixed template). Sig-

nificant progress had been made in field of image segmentation, e.g., [322], where

snake and region growing ideas were combined within a principled framework, and

[237], where spectral graph partitioning was employed for this purpose. From seg-

ments come shape and shape matching needs. In [65], elastic matching of images

was successfully applied to sketch-based image retrieval. Image representation by

multi-scale contour models were studied in [192]. The use of graphs to represent

spatial relationships between objects, specifically geared toward medical imaging,

was explored in [212]. In [244], 2D-strings [36] were employed for characterizing

spatial relationships among regions. A method for automatic feature selection was

proposed in [250]. In [242], the topic of visual content description was concluded

with a discussion on the advantages and problems of image segmentation, along

with approaches that can avoid strong segmentation but still characterize image

structure well enough for image retrieval. In the current decade, many region-based

methods for image retrieval have been proposed that do not depend on strong seg-

mentation. We discuss these and other new innovations in feature extraction in

Sec. 2.2.1.

Once image features were extracted, the question remained as to how they

could be indexed and matched against each other for retrieval. These methods

essentially aimed to reduce the semantic gap as much as possible, sometimes re-

ducing the sensorial gap as well in the process. In [242], similarity measures were

grouped as feature-based matching (e.g., [249]), object silhouette based match-

ing (e.g., [65]), structural feature matching (hierarchically ordered sets of features,

e.g., [288]), salient feature matching (e.g., geometric hashing [289]), matching at

the semantic level (e.g., [78]), and learning based approaches for similarity match-

ing (e.g., [297] and [285]). Closely tied to the similarity measures are how they
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emulate the user needs, and more practically, how they can be modified stepwise

with feedback from the user. In this respect, a major advance made in the user

interaction technology for image retrieval was relevance feedback (RF). Important

early work that introduced RF into the image retrieval domain included [223],

which was implemented in their MARS system [225]. Methods for visualization of

image query results were explored, for example, in [87, 35]. Content-based image

retrieval systems that gained prominence in this era were, e.g., IBM QBIC [87],

VIRAGE [105], and NEC AMORE [197] in the commercial domain, and MIT Pho-

tobook [209], Columbia VisualSEEK and WebSEEK [245], UCSB NeTra [176], and

Stanford WBIIS [279] in the academic domain. In [242], practical issues such as

system implementation and architecture, their limitations and how to overcome

them, the user in the loop, intuitive result visualization, and system evaluation

were discussed, and suggestions were made. Innovations of the new age based on

these suggestions and otherwise are covered extensively in Sec. 2.2.

2.1.2 Real-world Image Search Systems

Not many image retrieval systems are deployed for public usage, save for Google

Images or Yahoo! Images (which are based primarily on surrounding meta-data

such as filenames and HTML text). Recently, a public domain search engine

Riya (Fig. 2.3) has been developed which incorporates image retrieval and face

recognition for searching pictures of people and products on the Web. It is also

interesting to note that CBIR technology is being applied to domains as diverse

as family album management, Botany, Astronomy, Mineralogy, and Remote sens-

ing [309, 284, 52, 207, 232]. A publicly available similarity search tool [278] is

being used for an on-line database of over 800, 000 airline-related images [2, 240]

(Fig. 2.3), the integration of similarity search functionality to a large collection of

art and cultural images [95], and the incorporation of image similarity to a massive

picture archive [251] of the renowned travel photographer Q.-T. Luong.

Automatic linguistic indexing of pictures - real-time (ALIPR), an automatic

image annotation system [166] has been recently made public for people to try and

have their pictures annotated. As mentioned earlier, presence of reliable tags with

pictures are necessary for text-based image retrieval. As part of ALIPR search
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Figure 2.3. Real-world use of content-based image retrieval using color, texture, and
shape matching. Top: http://airliners.net, is a photo-sharing community with more
than a million airplane-related pictures. Bottom: http://riya.com is a collection of
several million pictures.
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Figure 2.4. Real-world use of automatic image annotation, http://alipr.com. The
screenshot shows a random set of uploaded pictures and the annotations given by ALIPR
(shown in blue and gray) and by users (shown in green).

engine, an effort to automatically validate computer generated tags with human

given annotation is being made to build a very large collection of searchable images

(Fig. 2.4). Another work-in-progress is a Web image search system [136] that

exploits visual features and textual meta-data using state-of-the-art algorithms,

for a comprehensive search experience.

Discussion

Image analysis and retrieval systems have received widespread public and media

interest of late [233, 68, 48]. It is reasonable to hope that in the near future,

the technology will diversify to many other domains. We believe that the future

of real-world image retrieval lies in exploiting both text-based and content-based

search technologies. While the former is considered more reliable from a user view

point, there is immense potential to combine the two to build robust image search

engines that make the ‘hidden’ part of the Web images accessible.
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2.2 Image Search Techniques: Addressing the

Core Problem

Despite the effort made in the early years of image retrieval research (Sec. 2.1.1),

we do not yet have a universally acceptable algorithmic means of characterizing

human vision, more specifically in the context of interpreting images. Hence, it is

not surprising to see continued effort in this direction, either building up on prior

work, or exploring novel directions. Considerations for successful deployment of

CBIR in the real-world are reflected by the research focus in this area.

By the nature of its task, the CBIR technology boils down to two intrinsic

problems: (a) how to mathematically describe an image, and (b) how to assess the

similarity between a pair of images based on their abstracted descriptions. The

first issue arises because the original representation of an image, which is an array

of pixel values, corresponds poorly to our visual response, let alone semantic un-

derstanding of the image. We refer to the mathematical description of an image

for retrieval purposes as its signature. From the design perspective, the extraction

of signatures and the calculation of image similarity cannot be cleanly separated.

The formulation of signatures determines to a large extent the realm for definitions

of similarity measures. On the other hand, intuitions are often the early motivat-

ing factors for designing similarity measures in a certain way, which in turn puts

requirements on the construction of signatures.

In comparison with pre-2000 work in CBIR, a remarkable difference of recent

years has been the increased diversity of image signatures. Advances have been

made in both the derivation of new features, e.g., shape, and the construction of

signatures based on these features, with the latter type of progress being more

pronounced. The richness in the mathematical formulation of signatures grows

together with the invention of new methods for measuring similarity. In the rest

of this section, we will first address the extraction of image signatures, and then

the methods for computing image similarity based on the signatures. In terms of

methodology development, a strong trend which has emerged in recent years is the

employment of statistical and machine learning techniques in various aspects of the

CBIR technology. Automatic learning, mainly clustering and classification, is used

to form either fixed or adaptive signatures, to tune similarity measures, and even
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to serve as the technical core of certain searching schemes, e.g., relevance feedback.

We thus not only discuss the influence of learning while addressing fundamentals

issues of retrieval but also devote a subsection on clustering and classification, pre-

sented in the context of CBIR. Finally, we review different paradigms of searching

with emphasis on relevance feedback. An actively pursued direction in image re-

trieval is to engage human in the searching process, i.e., to include human in the

loop. Although in the very early days of CBIR, several systems were designed

with detailed user preference specifications, the philosophy of engaging users in re-

cent work has evolved toward more interactive and iterative schemes by leveraging

learning techniques. As a result, the overhead for a user in specifying what she is

looking for at the beginning of a search is much reduced.

2.2.1 Extraction of Visual Signature

Most CBIR systems perform feature extraction as a pre-processing step. Once

obtained, visual features act as inputs to subsequent image analysis tasks such

as similarity estimation, concept detection, or annotation. Figure 2.5 illustrates

the procedure of generating image signatures and the main research problems in-

volved. Following the order typical in feature extraction and processing, we present

below the prominent recent innovations in visual signature extraction. The cur-

rent decade has seen great interest in region-based visual signatures, for which

segmentation is the quintessential first step. While we begin discussion with re-

cent progress in image segmentation, we will see in the subsequent section how

there is significant interest in segmentation-free techniques to feature extraction

and signature construction.

Image Segmentation

To acquire a region-based signature, a key step is to segment images. Reliable

segmentation is especially critical for characterizing shapes within images, without

which the shape estimates are largely meaningless. We described above a widely

used segmentation approach based on k-means clustering. This basic approach

enjoys a speed advantage, but is not as refined as some recently developed methods.

One of the most important new advances in segmentation employs the Normalized
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Figure 2.5. An overview on image signature formulation.

Cuts criterion [237]. The problem of image segmentation is mapped to a weighted

graph partitioning problem where the vertex set of the graph is composed of image

pixels and edge weights represent some perceptual similarity between pixel pairs.

The normalized cut segmentation method in [237] is also extended to textured

image segmentation by using cues of contour and texture differences [178], and to

incorporate known partial grouping priors by solving a constrained optimization

problem [303]. The latter has potential for incorporating real-world application-

specific priors, e.g., location and size cues of organs in pathological images.

Searching of medical image collections has been an increasingly important re-

search problem of late, due to the high-throughput, high-resolution, and high-

dimensional imaging modalities introduced. In this domain, 3D brain magnetic

resonance (MR) images have been segmented using Hidden Markov Random Fields

and the Expectation-Maximization (EM) algorithm [312], and the spectral cluster-

ing approach has found some success in segmenting vertebral bodies from sagittal

MR images [26]. Among other recent approaches proposed are segmentation based

on the mean shift procedure [49], multi-resolution segmentation of low depth of

field images [277], a Bayesian framework based segmentation involving the Markov

chain Monte Carlo technique [260], and an EM algorithm based segmentation using

a Gaussian mixture model [31], forming blobs suitable for image querying and re-
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trieval. A sequential segmentation approach that starts with texture features and

refines segmentation using color features is explored in [40]. An unsupervised ap-

proach for segmentation of images containing homogeneous color/texture regions

has been proposed in [66].

While there is no denying that achieving good segmentation is a major step

toward image understanding, some issues plaguing current techniques are compu-

tational complexity, reliability of good segmentation, and acceptable segmentation

quality assessment methods. In the case of image retrieval, some of the ways of

getting around this problem have been to reduce dependence on reliable segmenta-

tion [31], to involve every generated segment of an image in the matching process

to obtain soft similarity measures [278], or to characterize spatial arrangement of

color and texture using block-based 2-D multi-resolution hidden Markov models

(MHMM) [161, 163]. Another alternative is to use perceptual grouping principles

to hierarchically extract image structures [122]. In [55], probabilistic modeling of

class-wise color segment interactions has been employed for the purpose of image

categorization and retrieval, to reduce sensitivity to segmentation.

Major Types of Features

A feature is defined to capture a certain visual property of an image, either globally

for the entire image, or locally for a small group of pixels. Most commonly used

features include those reflecting color, texture, shape, and salient points in an im-

age. In global extraction, features are computed to capture overall characteristics

of an image. For instance, in a color layout approach, an image is divided into

a small number of sub-images and the average color components, e.g., red, green,

and blue, are computed for every sub-image. The overall image is thus represented

by a vector of color components where a particular dimension of the vector cor-

responds to a certain sub-image location. The advantage of global extraction is

the high speed for both extracting features and computing similarity. However,

as evidenced by the rare use of color layout in recent work, global features are

often too rigid to represent an image. Specifically, they can be over sensitive to

location and hence fail to identify important visual characteristics. To increase the

robustness to spatial transformation, the second approach to form signatures is by

local extraction and an extra step of feature summarization.
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In local feature extraction, a set of features are computed for every pixel using

its neighborhood, e.g., average color values across a small block centered around the

pixel. To reduce computation, an image may be divided into small non-overlapping

blocks, and features are computed individually for every block. The features are

still local because of the small block size, but the amount of computation is only a

fraction of that for obtaining features around every pixel. Let the feature vectors

extracted at block or pixel location (i, j) be xi,j, 1 ≤ i ≤ m, 1 ≤ j ≤ n, where the

image size m × n can vary. To achieve a global description of an image, various

ways of summarizing the data set {xi,j, 1 ≤ i ≤ m, 1 ≤ j ≤ n} have been explored,

leading to different types of signatures. A common theme of summarization is to

derive a distribution for xi,j based on the data set.

Exploration of color features was active in the nascency of CBIR, with em-

phasis on exploiting color spaces (e.g., LUV) that seem to coincide better with

human vision than the basic RGB color space. In recent years, research on color

features has focused more on the summarization of colors in an image, that is,

the construction of signatures out of colors. A set of color and texture descriptors

tested for inclusion in the MPEG-7 standard, and well suited to natural images

and video, is described in [183]. These include histogram-based descriptors, spatial

color descriptors and texture descriptors suited for retrieval.

Texture features are intended to capture the granularity and repetitive patterns

of surfaces within in a picture. For instance, grass land, brick walls, teddy bears,

and flower petals differ in texture by smoothness as well as patterns. Their role

in domain-specific image retrieval, such as in aerial imagery and medical imaging,

is particularly vital due to their close relation to underlying semantics in these

cases. Texture features have been studied for long in image processing, computer

vision, and computer graphics [109], such as multi-orientation filter banks [179] and

wavelet transforms [263]. In image processing, a popular way to form texture fea-

tures is by using the coefficients of a certain transform on the original pixel values

or more sophisticatedly, statistics computed from those coefficients. Examples of

texture features using the wavelet transform and the discrete cosine transform can

be found in [69, 162]. In computer vision and graphics, advances have been made

in fields such as texture synthesis, where Markov statistical descriptors based on

pairs of wavelet coefficients at adjacent location/orientation/scale in the images
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are used [216]. Among the earliest work on the use of texture features for im-

age retrieval are [184]. Texture descriptors, apt for inclusion in the MPEG-7, were

broadly discussed in [183]. Such descriptors encode significant, general visual char-

acteristics into standard numerical formats, that can used for various higher-level

tasks. A thesaurus for texture, geared toward aerial image retrieval, has been

proposed in [175]. The texture extraction part of this thesaurus building process

involves the application of a bank of Gabor filters [125] to the images, to encode

statistics of the filtered outputs as texture features. Advances in textured region

descriptors have been made, such as affine and photometric transformation in-

variant features that are also robust to the shape of the region in question [229].

While the target application is the more traditional stereo matching, it has been

shown to have potential for textured image matching and segmentation as well.

Advances in affine-invariant texture feature extraction, designed for texture recog-

nition, have been made in [189], with the use of interest point detection for sparsity.

Texture features at a point in the image are meaningful only as a function of its

neighborhood, and the (effective) size of this neighborhood can be thought of as

a scale at which these features are computed. Because a choice of scale is critical

to the meaningfulness of such features, it has been explored as an automatic scale

selection problem in [31], specifically to aid image retrieval.

Shape is a key attribute of segmented image regions, and its efficient and ro-

bust representation plays an important role in retrieval. Synonymous with shape

representation is the way such representations are matched with each other. In

general, over the years we have seen a shift from global shape representations, e.g.,

in [87], to more local descriptors, e.g., in [187, 13, 211], due to the typical model-

ing limitations. Representation of shape using discrete curve evolution to simplify

contours is discussed in [150]. This contour simplification helps remove noisy and

irrelevant shape features from consideration. A new shape descriptor for similarity

matching, referred to as shape context, is proposed which is fairly compact yet

robust to a number of geometric transformations [11]. In [13], curves are repre-

sented by a set of segments or tokens, whose feature representations (curvature

and orientation) are arranged into a metric tree [47] for efficient shape match-

ing and shape-based image retrieval. A dynamic programming (DP) approach to

shape matching is proposed in [211], where shapes are approximated as sequences
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of concave and convex segments. One problem with this approach is that compu-

tation of Fourier descriptors and moments is slow, although pre-computation may

help produce real-time results. Continuing with Fourier descriptors, exploitation

of both the amplitude and phase, and the use of Dynamic Time Warping (DTW)

distance instead of Euclidean distance is shown to be an accurate shape matching

technique in [10]. The rotational and starting point invariance otherwise obtained

by discarding the phase information is maintained here by adding compensation

terms to the original phase, thus allowing its exploitation for better discrimination.

Closely associated are approaches that model spatial relations among local im-

age entities for retrieval. Much of the approaches to spatial modeling and matching

have been influenced by earlier work on iconic indexing [36, 37] based on the the-

ory of symbolic projections. Here, images are represented based on orthogonal

projections of constituent entities, by encoding the corresponding bi-directional

arrangement on the two axes as a 2D string of entities and relationships. This

way, image matching is effectively converted from a spatial matching problem to

a one-dimensional matching one. Many variants of the 2D string model have been

proposed since. In recent years, extensions such as 2D Be-string [283] have been

proposed, where the symbolic encoding has been extended to represent entity lo-

cations more precisely, and avoid cutting entities along their bounding rectangles

for improved complexity. Another work on iconic indexing can be found in [210],

where a symbolic representation of real images, termed virtual image is proposed,

consisting of entities and the binary spatial relations among them. Compared

to traditional iconic representations and their variants, this approach allows more

explicit scene representation and more efficient retrieval, once again without requir-

ing the entities to be cut. In [14], a novel alternative to the previously discussed

class of spatial models, weighted walkthroughs, is proposed. This representation

allows quantitative comparison of entities, by incorporating the spatial relation-

ships among each pair of pixels from the two entities. These quantitative relations

allow images to be represented by attributed relational graphs (ARG), which essen-

tially makes the retrieval problem one of graph comparison, resulting in improved

retrieval performance. This idea has been extended to spatial modeling of 3D ob-

jects, in [12]. Other image models that capture spatial arrangements between local

features such as interest points, are discussed in the following paragraph.
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Features based on local invariants such as corner points or interest points, tra-

ditionally used for stereo matching, are being used in image retrieval as well. Scale

and affine invariant interest points that can deal with significant affine transforma-

tions and illumination changes have been shown effective for image retrieval [189].

In similar lines, wavelet-based salient points have been used for retrieval [255]. In

more recent work, the earth mover’s distance [221] has been used for matching

locally invariant features in [103], for the purpose of image matching. The sig-

nificance of such special points lies in their compact representation of important

image regions, leading to efficient indexing and good discriminative power, espe-

cially in object-based retrieval. In this domain, there has been a paradigm shift

from global feature representations to local descriptors, as evidenced by a large

number of recent publications. Typically, object categories or visual classes are

represented by a combination of local descriptors and their spatial distributions,

sometimes referred to collectively as part-based models. Variations usually arise

out of the ‘prior’ on the geometry imposed on the spatial relationship between the

local parts, with extremes being fully independent (bag of features, each repre-

senting a part or region), and fully connected (constellation model, [83]). A fully

connected model essentially limits the number of parts that can be modeled, since

the algorithm complexity grows exponentially with it. As a compromise, sparser

topologies have been proposed, such as the star topology [84], a hierarchy, with the

lowest levels corresponding to local features [20], and a geometry where local fea-

tures are spatially dependent on their nearest neighbors [28]. Model learning and

categorization performance achieved in [83] has been improved upon, particularly

in learning time, using contextual information and boosting, in [6, 4]. A recent

work [306] uses segmentation to reduce the number of salient points for enhanced

object representation. A discussion on the pros and cons of different types of color

interest points used in image retrieval can be found in [102], while a comparative

performance evaluation of the various proposed interest point detectors is reported

in [188]. The application of salient point detection for related feature extraction

has also been explored. For example, interest point detectors have been employed

for sparse texture representation, for the purpose of texture recognition, in [152].
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Construction of Signatures from Features

In Fig. 2.5, according to mathematical formulations, we summarize the types of

signatures roughly into vectors and distributions. As will be discussed in details

below, histograms and region-based signatures can both be regarded as sets of

weighted vectors, and when the weights sum up to one, these sets are equivalent

to discrete distributions(discrete in the sense that the support is finite). Our

discussion will focus on region-based signature and its mathematical connection

with histograms because it is the most exploited type of image signature. We note

however, that distributions extracted from a collection of local feature vectors can

be of other forms, for instance, a continuous density function [69], or even a spatial

stochastic model [164]. A continuous density in general is more precise to describe

a collection of local feature vectors than a discrete distribution with finitely many

support vectors. A stochastic model moves beyond a continuous density by taking

into account spatial dependence among local feature vectors. For special kinds of

images, we may need these sophisticated statistical models to characterize them.

For instance, in [164], it is noted that spatial relationship among pixels is crucial

for capturing Chinese ink painting styles. On the other hand, more sophisticated

statistical models are computationally costly and less intuitive.

In earlier work, histogram was a widely used form of distribution. Suppose the

feature vectors are denoted by xi,j ∈ Rd, the d-dimensional Euclidean space. To

form a basic histogram, Rd is divided into fixed bins and the percentage of xi,j’s

falling into each bin is calculated. Suppose there are k bins. A histogram can

then be treated as a k-dimensional vector (f1, f2, ..., fk)
t, where fl is the frequency

of the l-th bin. Improvements over the basic histogram signature have been ac-

tively pursued. In [107], a multi-resolution histogram, together with its associated

image matching algorithm, is shown to be effective in retrieving textured images.

Computation of histograms at multiple resolutions continues to have the simplicity

and efficiency of ordinary histograms, but it additionally captures spatial varia-

tions across images. In [128], Gaussian mixture vector quantization (GMVQ) is

used to extract color histograms and shown to yield better retrieval than uniform

quantization and vector quantization with squared error.

The disadvantages of treating histograms simply as vectors of frequencies are

noted in [221]. The main issue is that the vector representation ignores the location
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of bins used to generate the histogram. For measuring the closeness of distribu-

tions, the locations of histogram bins are vital. The Earth Movers Distance (EMD)

is proposed in [221] to take into consideration bin locations. When EMD is used,

histogram is mathematically a collection of feature vector and frequency pairs:

{(z1, f1), (z2, f2), ..., (zk, fk)}, where zl ∈ Rd is the center or location of the l-th

bin. It is shown in [156] that EMD, when applied to probability frequencies, is

equivalent to the Mallows Distance proposed in the early 1970’s [180], which is a

true metric for general probability measures. A histogram is a special distribution

in the sense that it is discrete, i.e., it takes only countably many different values

(for practical interest, finitely many). Moreover, histograms for different images

are usually derived using a fixed set of bins.

Once the histogram is viewed as {(z1, f1), (z2, f2), ..., (zk, fk)}, a weighted set

of vectors, a natural question to raise is why we have to employ a fixed set of

bins located at z1, ..., zk. A direct extension from histogram is to adpatively

generate zl and fl together and also let the number of bins k depend on the image

being handled. This is essentially the widely used region-based signature, as used

in [67, 278]. Consider the data set {xi,j, 1 ≤ i, 1 ≤ j}. Applying a clustering

procedure, e.g., k-means, to the data set groups the feature vectors xi,j into k̃

clusters such that the feature vectors in the same clusters tend to be tightly packed.

Let the mean of xi,j’s in the same cluster l be z′l. We thus have acquired a summary

of the data set: {(z′1, f ′1), ..., (z′k′, f ′k′)}, where f ′l is the percentage of xi,j’s grouped

into cluster l. The collection of pixels (i, j) for which xi,j’s are in the same cluster

forms a relatively homogeneous region because the common cluster forces closeness

between the visual features in xi,j’s. This is why clustering of local feature vectors

is a widely used method to segment images, and also why we call the signature

{(z′1, f ′1), ..., (z′k′, f ′k′)} region-based.

With fixed bins, histograms of image feature vectors tend to be sparse in multi-

dimensional space. In comparison, the region-based signature provides more com-

pact description of images because it allows the representative vectors z ′l to adapt to

images. In [67, 278], it is argued that region-based signature is more efficient com-

putationally for retrieval, and it also gets around drawbacks associated with earlier

propositions such as dimension reduction and color moment descriptors. Strictly

speaking, a region-based signature is not merely a dynamic histogram represen-
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tation, and despite the mathematical connections made above, is not necessarily

motivated by the intention of generalizing histograms. The motivation for using

region-based signature, as argued in [278], is that a relatively homogeneous region

of color and texture is likely to correspond to an object in an image. Therefore,

by extracting regions, we obtain, in a crude way, a collection of objects, and with

objects in an image listed, it is easier to engage intuitions for defining similarity

measures. Moreover, although we have z′l, the mean of xi,j’s in region l as a nat-

ural result of clustering, the description of the region can be expanded to include

features not contained in z′l, for instance, shape, which can only be meaningfully

computed after the region has been formed.

Adaptive Image Signature

It is quite intuitive that the same set of visual features may not work equally well

to characterize, say, computer graphics and photographs. To address this issue,

learning methods have been used to tune signatures either based on images alone

or by learning on-the-fly from user feedback. In Fig. 2.5, we categorize image

signatures according to their adaptivity into static, image-wise adaptive, and user-

wise adaptive. Static signatures are generated in a uniform manner for all the

images.

Image-wise adaptive signatures vary according to the classification of images.

The term semantic-sensitive coined in [278] reflects such a mechanism to adjust

signatures, and is a major trait of the SIMPLIcity system in comparison to the

predecessors. Specifically, images are classified into several types first, and then

signatures are formed from different features for these types. Despite the appeal

of semantic-sensitive retrieval as a general framework, the classification conducted

in SIMPLIcity only involves a small number of pre-selected image types (graph

vs. photograph, textured vs. non-textured). The classification method relies

on prior knowledge rather than training, and hence is not set up for extension.

More recently, semantic-sensitive features are also employed in a physics-motivated

approach [205], where images are distinguished as either photo-realistic rendering

or photograph.

Care must be taken to ensure that the added robustness provided by heteroge-

neous feature representation does not compromise on the efficiency of indexing and
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retrieval. When a large number of image features are available, one way to improve

generalization and efficiency is to work with a feature subset or impose different

weights on the features. To avoid a combinatorial search, an automatic feature sub-

set selection algorithm for SVMs is proposed in [286]. Some of the other recent,

more generic feature selection propositions involve boosting [256], evolutionary

searching [144], Bayes classification error [29], and feature dependency/similarity

measures [191]. An alternative way of obtaining feature weights based on user logs

has been explored in [199]. A survey and performance comparison of some recent

algorithms on the topic can be found in [106].

Discussion

The various methods for visual signature extraction come with their share of advan-

tages and limitations. While global features give the “big picture”, local features

represent the details. Therefore, depending on the scale of the key content or

pattern, an appropriate representation should be chosen. In this sense, hybrid rep-

resentations may sometimes be more attractive but this may come at additional

complexity. While segmentation is intended to recognize objects in a scene, precise

segmentation still remains an open problem. Therefore, alternative approaches to

characterize structure may be more suitable. However, such a representation may

lose the charm of clear interpretability. Among different approaches to segmenta-

tion, there is often a trade-off between quality and complexity, which might lead

to a difference in eventual search performance and speed. Hence, a choice on the

image signature to be used should depend on the desirability of the system.

In contrast with the early years (Sec. 2.1.1), we have witnessed a major shift

from global feature representations for images such as color histograms and global

shape descriptors to local features and descriptors, such as salient points, region-

based features, spatial model features, and robust local shape characterizations. It

is not hard to imagine that this shift was triggered by a realization that the image

domain was too deep for global features to reduce the semantic gap. Local features

often correspond with more meaningful image components such as rigid objects and

entities, which make association of semantics with image portions straightforward.

The future in image feature or signature representation resides both in theory

and practise. Many years of research has made it clear that emulating human
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Figure 2.6. Different types of image similarity measures, their mathematical formula-
tions and techniques for computing them.

vision is very challenging, but instead, practical approaches can help build useful

systems. While the endeavor to characterize vision will likely continue, particularly

in the core field of computer vision, practical approaches, e.g., fusion of local and

global representations for top-down as well as a bottom-up representations, will

potentially improve retrieval performance and user satisfaction in such systems.

The availability of three dimensional image data and stereo image data, whenever

obtainable, should be exploited to extract features more coherent with the human

vision system. In summary, reducing the sensorial gap in tandem with the semantic

gap should continue be a goal for the future.

2.2.2 Image Similarity using Visual Signature

Once a decision on the choice of image signatures is made, how to use them for

accurate image retrieval is the next concern. There has been a large number of

fundamentally different frameworks proposed in the recent years. Some of the key

motivating factors behind the design of the proposed image similarity measures

can be summarized as follows:

• agreement with semantics

• robustness to noise (invariant to perturbations)

• computational efficiency (ability to work real-time and in large-scale)

• invariance to background (allowing region-based querying)
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• local linearity (i.e., following triangle inequality in a neighborhood)

The various techniques can be grouped according to their design philosophies, as

follows:

• treating features as vectors, non-vector representations, or ensembles

• using region-based similarity, global similarity, or a combination of both

• computing similarities over linear space or non-linear manifold

• role played by image segments in similarity computation

• stochastic, fuzzy, or deterministic similarity measures

• use of supervised, semi-supervised, or unsupervised learning

Leaving out those discussed in [242], here we focus on some of the more recent

approaches to image similarity computation.

Figure 2.6 shows the basic types of signatures, distances (‘dissimilarity mea-

sures’) exploited, and underlying techniques needed to calculate these distances.

For each type of signatures, we also elucidate on its mathematical representation,

which to a large extent determines the choice of distances and the employment

of related methodologies. We will start discussion on the region-based signature

since its widespread use occurred in the current decade. The technical emphasis on

region-based signature is the definition of distance between sets of vectors, which

is not as obvious as defining distance between single vectors. Research on this

problem is further enriched by the effort to optimally choose a subset of regions

pertaining to users’ interests and by that to increase robustness against inaccurate

segmentation. Although global feature vectors had already been extensively used

in the early years of CBIR, advances were achieved in recent years by introducing

state-of-the-art learning techniques, e.g., manifold embedding. Research efforts

have been made to search for nonlinear manifolds in which the geodesic distances

may correspond better to human perception. Instead of describing an image by a

set of segmented regions, summaries of local feature vectors such as codebook and

probability density functions have been used as signatures. Codebooks are gener-

ated by vector quantization, and the codewords are sometimes treated symbolically
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with text retrieval techniques applied to them. An effective way to obtain a density

estimation is by fitting a Gaussian mixture model [110], and the Kullback-Leibler

distance is often used to measure the disparity between distributions.

First consider an image signature in the form of a weighted set of feature vectors

{(z1, p1), (z2, p2), ..., (zn, pn)}, where zi’s are the feature vectors and pi’s are the

corresponding weights assigned to them. The region-based signature discussed

above bears such a form, so a histogram can be represented in this way. Let us

denote two signatures by Im = {(z(m)
1 , p

(m)
1 ), (z

(m)
2 , p

(m)
2 ), ..., (z

(m)
nm , p

(m)
nm )}, m = 1, 2.

A natural approach to defining a region-based similarity measure is to match z
(1)
i ’s

with z
(2)
i ’s and then combine the distances between these vectors as a distance

between sets of vectors.

One approach to matching [278] is by assigning a weight to every pair z
(1)
i

and z
(2)
j , 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, and the weight si,j indicates the significance

of associating z
(1)
i with z

(2)
j . One motivation for the soft matching is to reduce

the effect of inaccurate segmentation on retrieval. The weights are subject to

constraints, the most common ones being
∑

i si,j = p
(2)
j and

∑
j si,j = p

(1)
i . Once

the weights are determined, the distance between I1 and I2 is aggregated from the

pair-wise distances between individual vectors:

D(I1, I2) =

n1∑

i=1

n2∑

j=1

si,jd(z
(1)
i , z

(2)
j ) , (2.1)

where the vector distance d(·, ·) can be defined in diverse ways depending on the

system. Other matching methods include the Hausdorff distance, where every z
(1)
i

is matched to its closest vector in I2, say z
(2)
i′ , and the distance between I1 and

I2 is the maximum among all d(z
(1)
i , z

(2)
i′ ). The Hausdorff distance, which is used

for image retrieval in [145], is symmetrized by computing additionally the distance

with the role of I1 and I2 reversed and choosing the larger one of the two distances:

DH(I1, I2) = max

(
max

i
min

j
d(z

(1)
i , z

(2)
j ), max

j
min

i
d(z

(2)
j , z

(1)
i )

)
. (2.2)

One heuristic to decide the matching weights si,j for the pair (z
(1)
i , z

(2)
j ) is to

seek si,j’s such that D(I1, I2) in (2.1) is minimized subject to certain constraints

on si,j. Suppose
∑

i p
(1)
i = 1 and

∑
j p

(2)
j = 1. This can always be made true
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by normalization as long as there is no attempt to assign one image an overall

higher signficance than the other. In practice, p
(1)
i ’s (or p

(2)
j ’s) often correspond to

probabilities and automatically yield unit sum. Since p
(1)
i indicates the significance

of region z
(1)
i and

∑
j si,j reflects the total influence of z

(1)
i in the calculation of

D(I1, I2), it is natural to require
∑

j si,j = p
(1)
i , for all i, and similarly

∑
i si,j = p

(2)
j ,

for all j. Additionally, we have the basic requirement si,j ≥ 0 for all i, j. The

definition of the distance is thus

D(I1, I2) = min
si,j

n1∑

i=1

n2∑

j=1

si,jd(z
(1)
i , z

(2)
j ) , (2.3)

subject to
∑

j si,j = p
(1)
i , for all i,

∑
i si,j = p

(2)
j , for all j, and si,j ≥ 0 for all i,

j. This distance is precisely the Mallows distance in the case of discrete distribu-

tions [180].

The Earth Mover’s Distance [221] (EMD) proposed early in the decade repre-

sents another soft matching scheme for signatures in the form of sets of vectors.

The measure treated the problem of image matching as one of “moving” compo-

nents of the color histograms of images from one to the other, with minimum effort,

synonymous with moving earth piles to fill holes. When pi and p′j are probabilities,

EMD is equivalent to the Mallows distance. Another useful matching based dis-

tance is the IRM (integrated region matching) distance [165]. The IRM distance

uses the most similar highest priority (MSHP) principle to match regions. The

weights si,j are subject to the same constraints as in the Mallows distance, but

D(I1, I2) is not computed by minimization. Instead, the MSHP criterion entails

that a pair of regions across two images with the smallest distance among all the

region pairs ought to be given the highest priority in matching, that is, to be as-

signed with a maximum valid weight si,j. The matching is conducted recursively

until all the region weights are consumed, i.e.,
∑

j si,j = p
(1)
i and

∑
i si,j = p

(2)
j

have been achieved for all i and j. IRM is significantly faster to compute than the

Mallows distance and has been found comparable in terms of retrieval results.

Improvements over the basic matching idea have been made from different

perspectives. These include tuning features according to image types, choosing re-

gion weights in more sophisticated ways, improving robustness against inaccurate

segmentation, and speeding up retrieval. In the SIMPLIcity system [278], a pre-
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liminary categorization (e.g., graph vs. photograph, textured vs. non-textured) is

applied to images and different sets of features are used for each category. Region

based image retrieval, under the assumption of a hidden semantic concept under-

lying image generation, is explored in [311]. Here, a uniform, sparse region-based

visual dictionary is obtained using self-organizing map (SOM) based quantization,

and images/regions are assumed to be generated probabilistically, conditional on

hidden or latent variables that reflect on their underlying semantics. A framework

for region-based image retrieval, with particular focus on efficiency, is proposed

in [132]. Here, vector quantization (VQ) is employed to build a region codebook

from training images, each entry sparsely or compactly represented, with distinct

advantages of efficiency and effectiveness in each case. To further speed up re-

trieval, a tree-structured clustering is applied to images to narrow down the search

range [72]. The system first uses a vector signature to decide which cluster an

image belongs to, and then uses the region-based signature and the IRM distance

to compare the query with images in the chosen cluster.

A variation of IRM is attempted in [41] to employ fuzziness to account for inac-

curate segmentation to a greater extent. A new representation for object retrieval

in cluttered images, without relying on accurate segmentation is proposed in [6].

Here, image model learning and categorization is improved upon using contex-

tual information and boosting algorithms. A windowed search over location and

scale is shown more effective in object-based image retrieval than methods based

on inaccurate segmentation [119]. A hybrid approach involves the use of rectan-

gular blocks for coarse foreground/background segmentation on the user’s query

region-of-interest (ROI), followed by a database search using only the foreground

regions [54].

Without user input, image similarity measures usually attempt to take all the

regions in an image into consideration. This may not be the best practice when

users’ interest is more specifically indicated than an example query image. For

instance, if the query is a sketch drawn by a user, it may be meaningless to let the

left out areas in the sketch affect image comparison. It can be more desirable to

match the sketch to only a relevant subset of regions automatically determined by

the retrieval system, as explored in [145].
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Even if the user starts searching with an example query image, it is sometimes

assumed that he or she is willing to specify a portion of the image as of interest.

This argument has led to the concept of region-based querying. The Blobworld

system [31], instead of performing image to image matching, lets users select one

or more homogeneous color-texture segments or blobs, as region(s) of interest. For

example, if one or more segmented blobs identified by the user roughly correspond

to a typical “tiger”, then her search becomes equivalent to searching for the “tiger”

object within images. For this purpose, the pictures are segmented into blobs using

the E-M algorithm, and each blob bi is represented as a color-texture feature vector

vi. Given a query blob bi, and every blob bj in the database, the most similar blob

has score

µi = max
j

exp

(
(vi − vj)

TΣ(vi − vj)

2

)
, (2.4)

where matrix Σ corresponds to user-adjustable weights on specific color and texture

features. The similarity measure is further extended to handle compound queries

using fuzzy logic. While this method can lead to more precise formulation of user

queries, and can help users understand the computer’s responses better, it also

requires greater involvement from and dependence on them. For finding images

containing scaled or translated versions of query objects, retrieval can also be

performed without any explicit involvement of the user [203].

As discussed previously, regions are obtained by segmenting images using lo-

cal feature vectors. Roughly speaking, region-based signatures can be regarded

as a result of summarizing these feature vectors. Along the line of using a sum-

mary of local feature vectors as the signature, there are other approaches explored.

For instance, in [122], primitive image features are hierarchically and perceptually

grouped and their inter-relationships are used to characterize structure [122]. An-

other approach is the use of vector quantization (VQ) on image blocks to generate

codebooks for representation and retrieval, taking inspiration from data compres-

sion and text-based strategies [321]. For textured images, segmentation is not

critical. Instead, distributions of the feature vectors are estimated and used as sig-

natures. Methods for texture retrieval using the Kullback-Leibler (K-L) divergence

have been proposed in [69, 185]. The K-L divergence, also known as the relative

entropy, is an asymmetric information theoretic measure of difference between two
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distributions f(·) and g(·), defined as

K(f, g) =

∫ +∞

−∞
f(x)log

f(x)

g(x)
dx, K(f, g) =

∑

x

f(x)log
f(x)

g(x)
(2.5)

in the continuous and discrete cases respectively. Fractal block code based image

histograms have been shown effective in retrieval on texture databases [215]. The

use of the MPEG-7 content descriptors to train self-organizing maps (SOM) for

image retrieval is explored in [149].

When images are represented as single vectors, many authors note the ap-

parent difficulty in measuring perceptual image distance by metrics in any given

linear feature space. One approach to tackle this issue is to search for a non-linear

manifold in which the image vectors lie, and to replace the Euclidean distance by

the geodesic distance. The assumption here is that visual perception corresponds

better with this non-linear subspace than the original linear space. Computa-

tion of similarity may then be more appropriate if performed non-linearly along

the manifold. This idea is explored and applied to image similarity and ranking

in [114, 269, 115, 112, 316]. Typical methods for learning underlying manifolds,

which essentially amount to non-linear dimension reduction, are Locally-linear

Embedding (LLE), Isomap, and multi-dimensional scaling (MDS) [64].

The different distance measures discussed so far have their own advantages and

disadvantages. While simple methods lead to very efficient computation, which

in turn make image ranking scalable - a quality that greatly benefits real-world

applications, they often are not effective enough to be useful. Depending on the

specific application and on the image signatures constructed, a very important

step in the design of an image retrieval system is the choice of distance measure.

Factors that differ across various distance measures include type of input, method

of computation, computational complexity, and whether the measure is a metric or

not. In table 2.1, we summarize the distance measures according to these factors,

for ease of comparison.

In the previous subsection, we discussed tuning image signatures by categoriz-

ing images or by learning from user preferences. A tightly related issue is to tune

image similarity measures. It is in fact impossible to completely set apart the two

types of adaptivity since tuning signatures ultimately results in the change of sim-
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Table 2.1. Popular distances measures used for image similarity computation.
Distance
Measure

Input Computation Complexity Metric

Euclidean
(L2norm)

~Xa, ~Xb ∈
� n

(vectors)

~Xa · ~Xb Θ(n) Yes

Weighted
Euclidean

~Xa, ~Xb ∈
� n

W ∈ � n (vec.
+ wts.)

~XT
a [W ] ~Xb

[·] ←
diagonalize

Θ(n) Yes

Hausdorff Vector sets:
{ ~X

(1)
a , .., ~X

(p)
a }

{ ~X
(
b1), .., ~X

(q)
b }

See Eqn. 2.2 Θ(pqn)
(d(·, ·) ← L2

norm)

Yes

Mallows Vector sets:
{ ~X

(1)
a , .., ~X

(p)
a }

{ ~X
(
b1), .., ~X

(q)
b }

Signific.: S

See Eqn. 2.3 Θ(pqn) +
variable part

Yes

IRM Vector sets:
{ ~X

(1)
a , .., ~X

(p)
a }

{ ~X
(
b1), .., ~X

(q)
b }

Signific.: S

See Eqn. 2.3 Θ(pqn) +
variable part

No

K-L di-
vergence

~F , ~G ∈ � m

(histograms)

∑
x F (x) log F (x)

G(x)
Θ(m) No

ilarity. Referring a tuning method in one way or the other is often merely a matter

of whichever is easier to understand. Automatic learning of image similarity mea-

sures with the help of contextual information has been explored in [292]. In the

case that a valid pairwise image similarity metric exists despite the absence of an

explicit vectored representation in some metric space, anchoring can be used for

ranking images [204]. Anchoring involves choosing a set of representative vantage

images, and using the similarity measure to map an image into a vector. Suppose

there exists a valid metric d(Fi, Fj) between each image pair, and a chosen set of K

vantage images {A1, ..., AK}. A vantage space transformation V : F → RK then

maps each image Fi in the database to a vectored representation V (Fi) as follows:

V (Fi) =< d(Fi, A1), ..., d(Fi, AK) > . (2.6)

With the resultant vector embedding, and after similarly mapping a query image

in the same space, standard ranking methods may be applied for retrieval. When
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images are represented as ensembles of feature vectors, or underlying distributions

of the low-level features, visual similarity can be ascertained by means of non-

parametric tests such as Wald-Wolfowitz [253] and K-L divergence [69]. When

images are conceived as bags of feature vectors corresponding to regions, multiple-

instance learning (MIL) can be used for similarity computation [310].

A number of probabilistic frameworks for CBIR have been proposed in the

last few years [130, 268]. The idea in [268] is to integrate feature selection, feature

representation, and similarity measure into a combined Bayesian formulation, with

the objective of minimizing the probability of retrieval error. One problem with

this approach is the computational complexity involved in estimating probabilistic

similarity measures. The complexity is reduced in [266] using VQ to approximately

model the probability distribution of the image features.

Discussion

As shown in Fig. 2.6, similarity computation can be performed with feature vec-

tors, region-based signatures, or summarized local features. The main advantage

of single vector representing an image is that algebraic and geometric operations

can be performed efficiently and in a principled fashion. However, many such rep-

resentations lack the necessary detail to represent complex image semantics. For

example, a picture of two cups on a plate by the window sill cannot easily be

mapped to a finite vector representation, simply because the space of component

semantics is extremely large, in practice. Instead, if a concatenation of region

descriptors is used to represent a picture, it is more feasible to map component

semantics (e.g., cup, window) to the image regions. On the other hand, extracting

semantically coherent regions is in itself very challenging. Probabilistic representa-

tions can potentially provide an alternative, allowing rich descriptions with limited

parametrization.

The early years (Sec. 2.1.1) showed us the benefits as well as the limitations

of feature vector representations. They also paved the way for the new breed of

region-based methods, which have now become more standard than ever before.

The idea of region-based image querying also gained prominence in the last few

years. Many new salient feature based spatial models were introduced, particularly

for recognizing objects within images, building up mostly on pre-2000 work. The
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idea that image similarity is better characterized by geodesic distances over a non-

linear manifold embedded in the feature space has improved upon earlier notions

of a linear embedding of images. A number of systems have also been introduced

for public usage in the recent years. The future of image similarity measures lie

in many different avenues. The subjectivity in similarity needs to be incorporated

more rigorously into image similarity measures, to achieve what can be called

personalized image search. This can also potentially incorporate ideas beyond

the semantics, such as aesthetics and personal preferences in style and content.

Extensions of the idea of non-linear image manifolds to incorporate the whole

spectrum of natural images, and to allow adaptability for personalization, are

avenues to look at. While development of useful systems remains critical, the

ever-eluding problem of reducing the semantic gap needs concerted attention.

2.2.3 Clustering and Classification

Over the years it has been observed that it is too ambitious to expect a single

similarity measure to produce robust perceptually meaningful ranking of images.

As an alternative, attempts have been made to augment the effort with learning-

based techniques. In table 2.2, for both clustering and classification, we summarize

the augmentations to traditional image similarity based retrieval, the specific tech-

niques exploited, and the limitations respectively.

Image classification or categorization has often been treated as a pre-processing

step for speeding up image retrieval in large databases and improving accuracy, or

performing automatic image annotation. Similarly, in the absence of labeled data,

unsupervised clustering has often been found to be useful for retrieval speedup as

well as improved result visualization. While image clustering inherently depends on

a similarity measure, image categorization has been performed by varied methods

that neither require nor make use of similarity metrics. Image categorization is

often followed by a step of similarity measurement, restricted to those images in

a large database that belong to the same visual class as predicted for the query.

In such cases, the retrieval process is intertwined, whereby categorization and

similarity matching steps together form the retrieval process. Similar arguments

hold for clustering as well.
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Table 2.2. Comparison of three learning techniques in context of image retrieval.
Augmentation
(User Involvement)

Purpose Techniques Drawbacks

Clustering (minimal) Meaningful
result visual-
ization, faster
retrieval,
efficient
storage

Side-information,
kernel mapping,
k-means, hier-
archical, metric
learning [42] [110]
[234] [292]

Same low-
level features,
poor user
adaptability

Classification (re-
quires prior training
data, not interactive)

Pre-
processing,
fast/accurate
retrieval,
automatic
organization

SVM, MIL, sta-
tistical models,
Bayesian classi-
fiers, k-NN, trees
[310] [110] [208]

Training in-
troduces bias,
many classes
unseen

Relevance Feed-

back (significant,
interactive)

Capture
user and
query specific
semantics,
refine rank
accordingly

Feature re-
weighting, region
weighting, ac-
tive learning,
memory/mental
retrieval, boosting
[110] [223] [123]
[79]

Same low
level features,
increased user
involvement

In the recent years, considerable progress has been made in clustering and

classification, with tremendously diverse target applications. It is not our intention

here to provide a general review of these technologies. We refer to [110] for basic

principles and a more comprehensive review. We will restrict ourselves to new

methods and applications appeared in image retrieval and closely related topics.

Unsupervised clustering techniques are a natural fit when handling large, un-

structured image repositories such as the Web. Figure 2.7 summarizes clustering

techniques according to the principles of clustering and shows the applicability

of different methods when the mathematical representation of learning instances

varies. Again, we divide the instances to be clustered into three types: vectors, sets

of vectors, and stochastic processes (including distributions), which are consistent

with the categorization of image signatures discussed in the previous subsection.

From the perspective of application, clustering specifically for Web images has re-

ceived particular attention from the multimedia community, where meta-data is

often available for exploitation in addition to visual features [280, 91, 24].
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Clustering methods fall roughly into three types: pair-wise distance based, op-

timization of an overall clustering quality measure, and statistical modeling. The

pair-wise distance based methods, e.g., linkage clustering and spectral graph par-

titioning, are of general applicability since the mathematical representation of the

instances becomes irrelevant. They are particularly appealing in image retrieval

because image signatures often have complex formulation. One disadvantage, how-

ever, is the high computational cost because we need to compute an order of n2

pair-wise distances, where n is the size of the data set. In [315], a locality pre-

serving spectral clustering technique is employed for image clustering in a way

that unseen images can be placed into clusters more easily than with traditional

methods. In CBIR systems which retrieve images ranked by relevance to the query

image only, similarity information among the retrieved images is not considered.

In this respect, [43] proposes the use of a new spectral clustering [237] based ap-

proach to incorporate such information into the retrieval process. In particular,

clusters are dynamically generated, tailored specifically to the query image each

time, to improve retrieval performance.

Clustering based on the optimization of an overall measure of the clustering

quality is a fundamental approach explored since the early days of pattern recog-

nition. The immensely popular method, k-means clustering, is one example. In

k-means, the merit of a clustering result is measured by the sum of within-cluster

distances between every vector and its cluster centroid. This criterion ensures that

clusters generated are tight, a heuristic generally accepted. Here, if the number of

clusters is not specified, a simple method to determine this number is to gradu-

ally increase it until the average distance between a vector and its cluster centroid

is below a given threshold. A more sophisticated way to determine the number

of clusters is the competitive agglomeration algorithm, with application to image

clustering [228]. In [101], an unsupervised clustering approach for images has been

proposed using the Information Bottleneck (IB) principle. The proposed method

works for discrete (histograms) as well as continuous (Gaussian mixture) image

representations. Clustering based on the IB principle [257] can be summarized as

follows: given two variables A (which we try to compress/cluster) and B (which

contains relevant information), and their joint distribution Pr(A, B), we seek to

perform soft partitioning of A by a probabilistic mapping V , i.e., Pr(V |A), in a
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Figure 2.7. Paradigms of clustering methods and their scopes of applications.

way that the mutual information among A and V is minimized, while the relevant

information among B and V is maximized.

In k-means clustering, a centroid vector is computed for every cluster. This

centroid vector is chosen to minimize the sum of within-cluster distances. When

the Euclidean distance is used, it can easily be shown that the centroid ought to be

the average of the vectors in a cluster. For non-vector data, the determination of

the centroid can be challenging. The extension of k-means to instances represented

by sets of weighted vectors is made in [166], namely, the D2-clustering algorithm.

The Mallows distance is used for region-based image signatures represented as

sets of weighted arbitrary vectors. When the weights assigned to the vectors are

probabilities, this representation is essentially a discrete distribution. The centroid

for every cluster is also a discrete distribution, for which both the probabilities and

the vectors in the support domain need to be solved. Although D2-clustering share

the same intrinsic criterion of clustering as k-means, computationally, it is much

more complex due to the complexity of the instances themselves. Large-scale linear

programming is used for the optimization in D2-clustering. Another algorithm for

clustering sets of vectors is developed using the IRM distance [160]. As compared

with D2-clustering, this algorithm is similar in principle and significantly faster,

but it has weaker optimization properties.

Statistical modeling is another important paradigm of clustering. The general

idea is to treat every cluster as a pattern characterized by a relatively restrictive
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distribution, and the overall data set is thus a mixture of these distributions. For

continuous vector data, the most used distribution of individual vectors is the

Gaussian distribution. By fitting a mixture of Gaussians to a data set, usually

by the EM algorithm [186], we estimate the means and covariance matrices of

the Gaussian components, which correspond to the center locations and shapes

of clusters. One advantage of the mixture modeling approach is that it not only

provides a partition of data but also yields an estimated density, which sometimes is

itself desired [69]. The component in a mixture model is not always a multivariate

distribution. For instance, in [164], the objects to be clustered are large areas of

images, and every cluster is characterized by a 2-D MHMM. As long as a probability

measure can be set up to describe a cluster, the mixture modeling approach applies

seamlessly. When it is difficult to form a probability measure in a certain space, a

mixture model can be established by clustering the data and mapping each cluster

to a distance-preserving Euclidean space [166]. In this case, the mixture model is

not used to yield clustering but to better represent a data set and eventually result

in better classification.

Image categorization (classification) is advantageous when the image database

is well-specified, and labeled training samples are available. Domain-specific collec-

tions such as medical image databases, remotely sensed imagery, and art and cul-

tural image databases are examples where categorization can be beneficial. Classifi-

cation is typically applied for either automatic annotation, or for organizing unseen

images into broad categories for the purpose of retrieval. Here we discuss the lat-

ter. Classification methods can be divided into two major branches: discriminative

modeling and generative modeling approaches. In discriminative modeling, classi-

fication boundaries or posterior probabilities of classes are estimated directly, e.g.,

SVM and decision trees. In generative modeling, the density of data within each

class is estimated and the Bayes formula is then used to compute the posterior.

Discriminative modeling approaches are more direct at optimizing classification

boundaries. On the other hand, the generative modeling approaches are easier to

incorporate prior knowledge and can be used more conveniently when there are

many classes.

Bayesian classification is used for the purpose of image retrieval in [264]. A

textured/non-textured and graph/photograph classification is applied as a pre-
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processing to image retrieval in [278]. Supervised classification based on SVMs

has been applied to images in [96]. A more recent work describes an efficient

method for processing multimedia queries in an SVM based supervised learning

framework [208]. SVMs have also been used in an MIL framework in [42]. In the

MIL framework, a set of say l training images for learning an image category are

conceived as labeled bags {(B1, y1), ..., (Bl, yl)}, where each bag Bi is a collection

of instances vij ∈ Rm. Each instance vij corresponds to a segmented region j of a

training image i, and yi ∈ {−1, +1} indicating negative or positive example with

respect to the category in question. The idea is to map these bags into a new

feature space where SVMs can be trained for classification. Image classification

based on a generative model for the purpose of retrieval is explored in [55].

Discussion

Clustering is a hard problem with two unknowns, i.e., the number of clusters,

and the clusters themselves. In image retrieval, clustering helps in visualization

and retrieval efficiency. The usual problems of clustering based applications appear

here as well, whereby the clusters may not be representative enough or accurate for

visualization. While supervised classification is more systematic, the availability of

comprehensive training data is often scarce. In particular, the veracity of “ground

truth” in image data itself is a subjective question.

Clustering and classification for the purpose of image retrieval received rela-

tively less attention in the early years. The spotlight was on feature extraction

and similarity computation. With the need for practical systems that scale well

to billions of images and millions of users, practical hacks such as pre-clustering

and fast classification have become critical. The popularization of new information-

theoretic clustering methods and classification methods such as SVM and Boosting,

have led to their extensive use in the image retrieval domain as well. New genera-

tive models such as Latent Dirichlet Allocation (LDA) and 2D-MHMM have made

their way into image modeling and annotation. The future, in our opinion, lies

in supervised and unsupervised generative models for characterizing the various

facets of images and meta-data. There is often a lot of structured and unstructured

data available with the images that can be potentially exploited through joint mod-

eling, clustering, and classification. It is difficult to guess how much these methods
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can help bridge the semantic or sensorial gap, but one thing is for sure: system

implementations can greatly benefit in various ways from the efficiency that these

learning-based methods can produce.

2.2.4 Relevance Feedback based Search Paradigms

The approach to search has an undeniable tie with the underlying core technology

because it defines the goals and the means to achieve them. One way to look at

the types of search is the modality (e.g., query by keyword/keyphrase, by example

images, or a combination of both. Other ways to characterize search is by the

nature and level of human and system interaction involved, and the user intent.

In this section, we concentrate on the latter categorization, exploring the different

search paradigms that affect how humans interact and systems interpret/respond.

Relevance feedback (RF) is a query modification technique which attempts

to capture the user’s precise needs through iterative feedback and query refine-

ment. It can be thought of as an alternative search paradigm, complementing

other paradigms such as keyword based search. Ever since its inception in the

CBIR community [223], a great deal of interest has been generated. In the absence

of a reliable framework for modeling high-level image semantics and subjectivity

of perception, the user’s feedback provides a way to learn case-specific query se-

mantics. While a comprehensive review can be found in [320], here we present

a short overview of recent work in RF, and the various ways these advances can

be categorized. We group them here based on the nature of the advancements

made, resulting in (possibly overlapping) sets of techniques that have pushed the

frontiers in a common domain, which include (a) learning-based advancements, (b)

feedback specification novelties, (c) user-driven methods, (d) probabilistic meth-

ods, (e) region-based methods, and (f) other advancements.

Learning-based Advancements

Based on the user’s relevant feedback, learning based approaches are typically used

to appropriately modify the feature set or the similarity measure. However, in

practise, a user’s RF results in only a small number of labeled images pertaining

to each high-level concept. This, along with other unique challenges pertinent
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to RF have generated interest in novel machine learning techniques to solve the

problem, such as one-class learning, active learning, and manifold learning. To

circumvent the problem of learning from small training sets, a discriminant-EM

algorithm is proposed to make use of unlabeled images in the database for selecting

more discriminating features [297]. One the other hand, it is often the case that

the positive examples received due to feedback are more consistently located in the

feature space than negative examples, which may consist of any irrelevant image.

This leads to a natural formulation of one-class SVM for learning relevant regions

in the feature space from feedback [44]. Let {v1, ...,vn}, vi ∈ Rd be a set of n

positive training samples. The idea is to find a mapping Φ(vi) such that most

samples are tightly contained in a hyper-sphere of radius R in the mapped space

subject to regularization. The primal form of the objective function is given by

min
R,e,c

(
R2 +

1

kn

∑

i

ei

)
subject to ||Φ(vi)− c||2 ≤ R2 + ei, ei ≥ 0, i ∈ {1, ..., n}.

(2.7)

Here, c is the hyper-sphere center in the mapped space, and k ∈ [0, 1] is a constant

that controls the trade-off between radius of the sphere and number of samples it

can hold. Among other techniques, a principled approach to optimal learning from

RF is explored in [222]. We can also view RF as an active learning process, where

the learner chooses an appropriate subset for feedback from the user in each round

based on her previous rounds of feedback, instead of choosing a random subset.

Active learning using SVMs was introduced into RF in [259]. Extensions to active

learning have also been proposed [97, 113]. In [115], it is conceived that image

features reside on a manifold embedded in the Euclidean feature space. Under

this assumption, relevant images to the query provided by RF, along with their

nearest neighbors, are used to construct a sub-graph over the images. The geodesic

distances, i.e., the shortest path on the graph between pairs of vertices representing

image pairs, are then used to rank images for retrieval.

Feedback Specification Novelties

Traditionally, RF has engaged the user in multiple rounds of feedback, each round

consisting of one set each of positive and negative examples in relation to the
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intended query. However, recent work has introduce other paradigms of query

specification that have been found to be either more intuitive, or more effective.

Feedback based directly on image semantics characterized by manually defined

image labels, and appropriately termed semantic feedback, is proposed in [300]. A

well-known issue with feedback solicitation is that multiple rounds of feedback test

the user’s patience. To circumvent this problem, user logs on earlier feedback can

be used in query refinement, thus reducing the user engagement in RF, as shown

in [118]. Innovation has also come in the form of the nature by which feedback is

specified by the user. In [143], the notion of a multi-point query, where multiple

image examples may be used as query and in intermediate RF step, is introduced.

At each round of the RF, clusters of images found relevant based on the previous

feedback step are computed, whose representatives form the input for the next

round of RF. It is well known that there is generally an asymmetry between the

sets of positive and negative image examples presented by the user. In order to

address this asymmetry during RF when treating it as a two-class problem, a

biased discriminant analysis based approach has been proposed in [318]. While

most algorithms treat RF as a two-class problem, it is often intuitive to consider

multiple groups of images as relevant or irrelevant [117, 201, 317]. For example,

a user looking for cars can highlight groups of blue and red cars as relevant, since

it may not be possible to represent the concept car uniformly in a visual feature

space. Another novelty in feedback specification is the use of multi-level relevance

scores, to indicate varying degrees of relevance [293].

User-driven Methods

While much of the past attempt at RF has focused on the machine’s ability to

learn from the user feedback, the user’s point of view in providing the feedback

has largely been taken for granted. Of late, there has been some interest in design

RF paradigms aimed to help users. In some new developments, there have been

attempts at tailoring the search experience by providing the user with cues and

hints for more specific query formulation [123, 200]. While the approach may still

involve RF from the system point of view, it is argued that the human memory

can benefit from cues provided, for better query formulation. A similar search

paradigm proposed in [79, 80] models successive user response using a Bayesian,
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information-theoretic framework. The goal is to ‘learn’ a distribution over the

image database representing the mental image of the user and use this distribution

for retrieval. Another well-known issue with human being in the loop is that

multiple rounds of feedback are often bothersome for the user, which have been

alleviated in [118] by making use of logs that contain earlier feedback given by

that user. Recently, a manifold learning technique to capture user preference over

a semantic manifold from RF is proposed in [170].

Probabilistic Methods

Probabilistic models, while popular in early years of image retrieval for tackling

the basic problem, have found increasing patronage for performing RF in the re-

cent years. Probabilistic approaches have been taken in [50, 248, 267]. In [50], the

PicHunter system is proposed, where uncertainty about the user’s goal is repre-

sented by a distribution over the potential goals, following which the Bayes’ rule

helps select the target image. In [248], RF is incorporated using a Bayesian classi-

fier based re-ranking of the images after each feedback step. The main assumption

used here is that the features of the positive examples, which potentially reside

in the same semantic class, are all generated by an underlying Gaussian density.

The RF approach in [267] is based on the intuition that the system’s belief at a

particular time about the user’s intent is a prior, while the following user feedback

is new information. Together, they help compute the new belief about the intent,

using the Bayes’ rule, which becomes the prior for the next feedback round.

Region-based Methods

With increased popularity of region-based image retrieval [31, 278, 145], attempts

have been made to incorporate the region factor into RF. In [132], two different

RF scenarios are considered, and retrieval is tailored to support each of them

through query point modification and SVM-based classification respectively. In

this feedback process, the region importance (RI) for each segmented region is

learned, for successively better retrieval. This core idea, that of integrating region-

based retrieval with relevance feedback, has been further detailed for the two RF

scenarios in [133].
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Other Advancements

Besides the set of methods grouped together, there have been a number of isolated

advancements covering various aspects of RF. For example, methods for performing

RF using visual as well as textual features (meta-data) in unified frameworks have

been reported in [173, 319, 6, 134]. A tree-structured SOM has been used as

an underlying technique for RF [148] in a CBIR system [149]. A well-known RF

problem with query specification is that after each round of user interaction, the top

query results need to be recomputed following some modification. A way to speed

up this nearest-neighbor search is proposed in [294]. The use of RF for helping

capture the relationship between low-level features and high-level semantics, a

fundamental problem in image retrieval, has been attempted using logs of user

feedbacks, in [108].

Discussion

Relevance feedback provides a compromise between a fully automated, unsuper-

vised system and one based on the subjective user needs. While query refinement

is an attractive proposition when it comes to a very diverse user base, there is also

the question of how well the feedbacks can be utilized for refinement. Whereas a

user would prefer shorter feedback sessions, there is an issue as to how much feed-

back is enough for the system to learn the user needs. One issue which has been

largely ignored in past RF research is that the user’s needs might evolve over the

feedback steps, making the assumption of a fixed target weaker. New approaches

such as [123, 79] have started incorporating this aspect of the user’s mind in the

RF process.

Relevance feedback was introduced into image retrieval at the fag end of the

previous decade (Sec. 2.1.1). Today, it is a more mature field, spanning many

different sub-topics and addressing a number of practical concerns keeping in mind

the user in the loop. While this has happened, one issue is that we do not see many

real-world implementations of the relevance feedback technology either in the image

or in the text retrieval domain. This is potentially due to the feedback process

that the users must go through, that tests the user’s patience. New ideas such

as memory retrieval, that actually provide the user with benefits in the feedback
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process, may possibly be one answer to popularizing RF. The future of this field

clearly lies in its practical applicability, focusing on how the user can be made to

go through least effort to convey the desired semantics. The breaking points of the

utility derived out of this process, at which the user runs out of patience and at

which she is satisfied with the response, must be studied for better system design.

2.2.5 Multimodal Fusion and Retrieval

Media relevant to the broad area of multimedia retrieval and annotation includes,

but is not limited to, images, text, free-text (unstructured, e.g., paragraphs),

graphics, video, and any conceivable combination of them. Thus far, we have

encountered a multitude of techniques for modeling and retrieval of images, and

text associated with those images. While not covered here, the reader may be

aware of equally broad spectrums of techniques for text, video, music, and speech

retrieval. In many cases, these independent, media-specific methods do not suffice

to satiate the needs of users who are seeking what they can best describe only by a

combination of media. Therein lies the need for multimodal fusion as a technique

for satisfying such user queries. We consider this as one of the ‘core’ techniques

because in principal, it is distinct from any of the methods we have discussed so

far. Even with very good retrieval algorithms available independently for two dif-

ferent media, effectively combining them for multimodal retrieval may be far from

trivial. Research in fusion learning for multimodal queries therefore attempts to

learn optimal combination strategies and models.

Fortunately (for researchers) or unfortunately (for users), precious little multi-

modal fusion has been attempted in the context of image retrieval and annotation.

This opens avenues for exploring novel user interfaces, querying models, and result

visualization techniques pertinent to image retrieval, in combination with other

media. Having said that, we must point out that multimodal fusion has indeed

been attempted in the more obvious problem settings within video retrieval. With

this field as an example, we briefly expose readers to multimodal fusion, in the

hope that it motivates image retrieval research that takes advantage of these tech-

niques. We believe that the need for mutimodal retrieval in relation to images will

soon grow in stature.
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When video data comes with closed-captions and/or associated audio track,

these can prove to be useful meta-data for retrieval as well. One of the key prob-

lems faced in video retrieval research is therefore combination or fusion of responses

from these multiple modalities. It has been observed and reported that multimodal

fusion almost always enhances retrieval performance for video [111]. Usually, fusion

involves learning some kind of combination rules across multiple decision streams

(ranked lists or classifier response) using a certain amount of data with ground

truth as validation set. This is also referred to as late fusion. Alternative ap-

proaches to fusion involve classifier re-training. In [296], multimodal fusion has

been treated as a two-step problem. The first step involves finding statistically in-

dependent modalities, followed by super-kernel fusion to determine their optimal

combination. Fusion approaches have been found to be beneficial for important

video applications such as detection of documentary scene changes [271] and story

segmentation [304]. Fusion learning has been found to outperform naive fusion ap-

proaches as well as the oracle (best performer) for TRECVID 2005 query retrieval

task. [137].

Discussion

Fusion learning is an off-line process while fusion application at real-time is com-

putationally inexpensive. Hence multimodal fusion is an excellent method to boost

retrieval performance at real-time. However, special care needs to be taken to en-

sure that the fusion rules do not overfit the validation set used for learning them.

Usually, data resampling techniques such as bagging are found to help avoid overfit-

ting to some extent. Fusion techniques can also be used to leverage classifiers built

for numerous concepts with possible semantic coherence, whether the underlying

data is image or video.

Fusion for image retrieval is a fairly novel area, with very little achieved in the

early ages. The ideas of fusion go hand in hand with practical, viable, system

development, which is critical for the future of image retrieval research. We live

in a truly multi-media world, and we as humans always take the benefit of each

media for sensory interpretation (see, hear, smell, taste, touch). There is no reason

why advantage of all available media (images, video, audio, text) should not be

taken for building useful systems. The future lies in harnessing as many channels
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of information as possible, and fusing them in smart, practical ways to solve real

problems. Principled approaches to fusion, particularly probabilistic ones, can also

help provide performance guarantees, which in turn convert to quality standards

for public-domain systems.

2.3 Offshoots: Problems of the New Age

Smeulders et al. [242] surveyed CBIR at the end of what they referred to as early

years. The field was presented as a natural successor to certain existing disciplines

such as computer vision, information retrieval and machine learning. However, in

the last few years, CBIR has evolved and emerged as a mature research effort in its

own right. A significant section of the research community is now shifting attention

to certain problems which are peripheral, yet of immense significance to image

retrieval systems, directly or indirectly. Moreover, newly discovered problems are

being solved with tools that were intended for image retrieval. In this section, we

discuss some such directions. Note that much of these peripheral ideas are in their

infancy, and have likelihood of breaking into adulthood if sufficiently nurtured by

the relevant research communities. Owing to the exploratory nature of the current

approaches to these problems, a discussion on where these sub-fields are heading

and what opportunities lie ahead in the future for innovation is necessary.

2.3.1 Automatic Annotation

While at the problem of understanding picture content, it was soon learned that

in principle, associating those pictures with textual descriptions was only one step

ahead. This led to the formulation of a new but closely associated problem called

automatic image annotation, often referred to as auto-annotation or linguistic in-

dexing. The primary purpose of a practical content-based image retrieval system

is to discover images pertaining to a given concept in the absence of reliable meta-

data. All attempts at automated concept discovery, annotation, or linguistic in-

dexing essentially adhere to that objective. Annotation can facilitate image search

through the use of text. If the resultant automated mapping between images and

words can be trusted, text-based image searching can be semantically more mean-
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ingful than search in the absence of any text. Here we discuss two different schools

of thought which have been used to address this problem.

2.3.1.1 Joint Word-Picture Modeling Approach

Many of the approaches to image annotation have been inspired by research in the

text domain. Ideas from text modeling have been successfully imported to jointly

model textual and visual data. In [74], the problem of annotation is treated as a

translation from a set of image segments to a set of words, in a way analogous to

linguistic translation. A multi-modal extension of a well known hierarchical text

model is proposed. Each word, describing a picture, is believed to have been gener-

ated by a node in a hierarchical concept tree. This assumption is coherent with the

hierarchical model for nouns and verbs adopted by Wordnet [190]. This translation

model is extended [131] to eliminate uncorrelated words from among those gener-

ated, making used of the Wordnet ontology. In [15], Latent Dirichlet Allocation

(LDA) is proposed for modeling associations between words and pictures.

In all such approaches, images are typically represented by properties of each of

their segments or blobs. Once all the pictures have been segmented, quantization

can be used to obtain a finite vocabulary of blobs. Thus pictures under such models

are treated as bags of words and blobs, each of which are assumed to have been

generated by aspects. Aspects are hidden variables which spawn a multivariate

distribution over blobs and a multinomial distribution over words. Once the joint

word-blob probabilities have been learned, the annotation problem for a given

image is reduced to a likelihood problem relating blobs and words. The spatial

relationships between blobs is not directly captured by the model. However, this

is expected to be implicitly modeled in the generative distribution. Most of these

techniques rely on precise segmentation, which is still challenging. Despite the

limitations, such modeling approaches remain popular.

Cross-Media relevance models models have been used for image annotation

in [127, 151]. A closely related approach involves coherent language models, which

exploits word-to-word correlations to strengthen annotation decisions [129]. All

the annotation strategies discussed so far model visual and textual features sep-

arately prior to association. A departure from this trend is seen in [193], where

probabilistic latent semantic analysis (PLSA) is used on uniform vectored data
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consisting of both visual features and textual annotations. This model is extended

to a nonlinear latent semantic analysis for image annotation in [171].

2.3.1.2 Supervised Categorization Approach

An alternative approach is to treat image annotation as a supervised categoriza-

tion problem. Concept detection through supervised classification, involving sim-

ple concepts such as city, landscape, and sunset is achieved with high accuracy

in [264]. More recently, image annotation using a novel structure-composition

model, and a WordNet-based word saliency measure has been proposed in [55].

One of the earliest attempts at image annotation can be found in [163]. The sys-

tem, ALIP (Automatic Linguistic Indexing of Pictures) uses a 2-D multi-resolution

hidden Markov models based approach to capture inter-scale and intra-scale spatial

dependencies of image features of given semantic categories. Models for individ-

ual categories are learned independently and stored. The annotation step involves

calculating likelihoods of the query image given each learned model/category, and

choosing annotations with bias toward statistically salient words corresponding to

the most likely categories. A real time image annotation system ALIPR (Auto-

matic Linguistic Indexing of Pictures - Real Time) has been recently proposed

in [166]. ALIPR inherits its high level learning architecture from ALIP. However,

the modeling approach is simpler, hence leading to real-time computations of sta-

tistical likelihoods. Being the first real time image annotation engine, ALIPR has

generated considerable interest for real-world applications [3].

Learning concepts from user’s feedback in a dynamic image database using

Gaussian mixture models is discussed in [70]. An approach to soft annotation, using

Bayes Point machines, to give images a confidence level for each trained semantic

label is explored in [34]. This vector of confidence labels can be exploited to rank

images for keyword search. A confidence based ensemble of SVM classifiers is used

for annotation in [158]. Multiple instance learning based approaches have been

proposed for semantic categorization of images [42] and to learn the correspondence

between image regions and keywords [299]. Concept learning based on a fusion of

complementary classification techniques with limited training samples is proposed

in [202]. Annotating images in dynamic settings (e.g., Flickr), where images and

tags arrive asynchronously over time, has been explored in [57].
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Discussion: Automated annotation is widely recognized as an extremely diffi-

cult question. We humans segment objects better than machines, having learned

to associate over a long period of time, through multiple viewpoints, and literally

through a “streaming video” at all times, which partly accounts for our natural seg-

mentation capability. The association of words and blobs becomes truly meaningful

only when blobs isolate objects well. Moreover, how exactly our brain does this

association is unclear. While Biology tries to answer this fundamental question,

researchers in information retrieval tend to take a pragmatic stand in that they

aim to build systems of practical significance. Ultimately, the desire is to be able

to use keyword queries for all images regardless of any manual annotations that

they may have. To this end, a recent attempt at bridging the retrieval-annotation

gap has been made [55].

2.3.2 Inference of Image Aesthetics

Thus far, the focus of CBIR has been on semantics. There have been numerous

discussion on the semantic gap. Imagine a situation where this gap has been

bridged. This would mean, for example, finding all ‘dog’ pictures in response to

a ‘dog’ query. In text-based search engines, a query containing ‘dog’ will yield

millions of Web pages. The smart search engine will then try to analyze the query

to rank the best matches higher. The rationale for doing so is that of predicting

what is most desirable based on the query. What, in CBIR, is analogous to such

ranking, given that a large subset of the images are determined to be semantically

relevant? This question has been recently addressed in [56].

We conjecture that one way to distinguish among images of similar semantics

is by their quality. Quality can be perceived at two levels, one involving concrete

image parameters like size, aspect ratio and color depth, and the other involving

higher-level perception, which we denote as aesthetics. While it is trivial to rank

images based on the former, the differences may not be significant enough to use

as ranking criteria. On the other hand, aesthetics is the kind of emotions a picture

arouses in people. Given this vague definition, and the subjectivity associated

with emotion, it is open to dispute how to aesthetically distinguish pictures. As

discussed below, current attempts to model aesthetics have had limited success,
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and the limitation arises primarily from the inability to extract information related

to perceived emotions from pixel information. In a sense, this is analogous to the

concept of semantic gap [242] in the domain of aesthetics inference, and probably

a wider one at this moment. To formalize this analogy, we propose to define what

we call the aesthetic gap, as follows:

The aesthetic gap is the lack of coincidence between the information

that one can extract from low-level visual data (i.e., pixels in digital

images) and the interpretation of emotions that the visual data may

arouse in a particular user in a given situation.

Despite the challenge in dealing with this gap, in our opinion, modeling aesthetics

of images is an important open problem that will only get more prominent as time

passes. Given a feasible model, a new dimension to image understanding will be

added, benefiting CBIR and allied communities.

Discussion: The question remains how this problem can be approached. Given

the high subjectivity of aesthetics, it may help to re-define the goal as a model

that can characterize aesthetics in general. One way to model aesthetics in gen-

eral is to study photo rating trends in public photo-sharing communities such

as [213], an approach that has been followed in [56]. The site supports peer-rating

of photographs based on aesthetics. This has generated a large database of ratings

corresponding to the over one million photographs hosted. A discussion on the sig-

nificance of these ratings, and aesthetic quality in general, can be found in [214].

Another attempt [140] at distinguishing high-quality images from low-quality ones

has found similar levels of success with data obtained from yet another peer-rated

photo contest oriented Website [71]. The idea of learning to assess visual aesthetics

from such training data has been further pursued for the purpose of selecting high-

quality pictures and eliminating low-quality ones from image collections, in [62].

One caveat: Uncontrolled publicly collected data are naturally inclined to noise.

When drawing conclusions about the data, this assumption must be kept in mind.

Alternatively, ways to get around the noisy portions must be devised.
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2.3.3 Web Image Search

The Web connects systems to systems, systems to people, and people with other

people. Hosting a system on the Web is significantly different from hosting it in a

private network or a single machine. What makes things different is that we can

no longer make assumptions about the users, their understanding of the system,

their way of interacting, their contributions to the system, and their expectations

from the system. Moreover, Web-based systems muster support of the masses only

as long as they are useful to them. Without support, there is no meaning to such

a system. This makes the creation of Web-based CBIR systems more challenging

than the core questions of CBIR, aggravated further by the fact that multimedia

searching is typically more complex than generic searching [126]. Thankfully, the

problem has recently received a lot of attention from the community, enough to

have a survey dedicated specifically to it [142].

While we cannot make assumptions about generic Web-based CBIR systems,

those designed keeping in mind specific communities can be done with some as-

sumptions. Web-based CBIR services for copyright protection, tourism, entertain-

ment, crime prevention, research, and education are some domain-specific possibil-

ities, as reported in [142]. One of the key tasks of Web image retrieval is crawling

images. A smart Web-crawler that attempts to associate captions with images to

extract useful meta-data in the crawling process is reported in [220].

There have been many algorithms proposed for image search based on sur-

rounding text, including those implemented in Google and Yahoo! image search.

Here we discuss work that exploits image content in part or full for retrieval. One

of the earlier systems for Web-based CBIR, iFind, incorporating relevance feedback

was proposed in [307]. More recently, Cortina, a combined content and meta-data

based image search engine is made public [218]. Other approaches to Web-based

image retrieval include mutual reinforcement [281], bootstrapping for annotation

propagation [81], and nonparametric density estimation with application to an art

image collection [246]. Image grouping methods such as unsupervised clustering are

extremely critical for heterogeneous repositories such as the Web (as discussed in

Sec. 2.2.3), and this is explored in [280, 91, 24, 135]. More recently, rank fusion for

Web image retrieval from multiple online picture forums has been proposed [308].

Innovative interface designs for Web image search have been explored in [301, 169].
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The SIMPLIcity system [278] has been incorporated into popular Websites such

as Airliners.net [2], Global Memory Net [95], and Terragalleria [251].

Discussion: The impact of CBIR can be best experienced through a Web-

based image search service that gains popularity to the proportion of its text-based

counterparts. Unfortunately, at the time of writing this survey, this goal is elusive.

Having said that, the significant progress in CBIR for the Web raises hopes for

such systems in the coming years.

2.3.4 Image-based Security

The interactions between CBIR and information security had been non-existent,

until new perspectives emerged to strengthen the ties. Two such perspectives are

human interactive proofs (HIPs), and the enforcement of copyright protection.

While on one hand, we are constantly pushing the frontiers of science to design

intelligent systems that can imitate human capabilities, we cannot deny the inher-

ent security risks associated with extremely smart computer programs. One such

risk is when Websites or public servers are attacked by malicious programs that

request service on massive scale. Programs can be written to automatically con-

sume large amount of Web resources or bias results in on-line voting. The HIPs,

also known as CAPTCHAs, are a savior in these situations. These are interfaces

designed to differentiate between humans and automated programs, based on the

response to posed questions. The most common CAPTCHAs use distorted text, as

seen in public Websites such as Yahoo!, MSN, and PayPal. Recently, a number of

OCR-based techniques have been proposed to break text-based CAPTCHAs [195].

This has paved the way for natural image based CAPTCHAs, owing to the fact

that CBIR is generally considered a much more difficult problem than OCR. The

first formalization of image based CAPTCHAs is found in [45], where pictures

chosen at random are displayed and questions asked, e.g., what does the picture

contain, which picture is the odd one out conceptually, etc. A problem with

this approach is the possibility that CBIR and concept learning techniques such

as [9, 163] can be used to attack image based CAPTCHAs. This will eventually

lead to the same problem faced by text-based CAPTCHAs. To alleviate this prob-

lem, a CBIR system is used as a validation technique in order to distort images
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before being presented to users [60]. The distortions are chosen such that proba-

bilistically, CBIR systems find it difficult to grasp the image concepts and hence

are unable to simulate human response.

The second issue is image copy protection and forgery detection. Photographs

taken by one person and posted online are often copied and passed on as some-

one else’s artistry. Logos and trademarks of well-established organizations have

often been duplicated by lesser-known firms, with or without minor modification,

and with a clear intention to mislead patrons. While plagiarism of this nature is

a world-wide phenomenon today, protection of the relevant copyrights is a very

challenging task. The use of CBIR to help identify and possible enforce these

copyrights is a relatively new field of study. In the case of exact copies, detecting

them is trivial: extraction and comparison of a simple file signature is sufficient.

However, when changes to the pictures or logos are made, image similarity mea-

sures such as those employed in CBIR are necessary. The changes could be one

or more of down-sampling, lowering of color-depth, warping, shearing, cropping,

de-colorizing, palette shifting, changing contrast/brightness, image stamping, etc.

The problem then becomes one of near-duplicate detection, in which case the sim-

ilarity measures must be robust to these changes. Interest point detectors for

generating localized image descriptors robust to such changes have been used for

near-duplicate detection in [138]. A part-based image similarity measure that is

derived from the stochastic matching of Attributed Relational Graphs is exploited

for near-duplicate detection in [305].

Discussion: Much of security research is on anticipation of possible attack

strategies. While image-based CAPTCHA systems anticipate the use of CBIR for

attacks, near-duplicate detectors anticipate possible image distortion methods a

copyright infringer may employ. Whether CBIR proves useful to security is yet to

be seen, but dabbling with problems of this nature certainly helps CBIR grow as a

field. For example, as noted in [305], near-duplicate detection also finds application

in weaving news stories across diverse video sources for news summarization. The

generation of new ideas as offshoots, or in the process of solving other problems is

the very essence of this section.
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2.3.5 Innovation in Machine Learning

While more often than not machine learning has been used to help solve the fun-

damental problem of image retrieval, there are instances where new and generic

machine learning and data mining techniques have been developed in attempts

to serve this purpose. The correspondence-LDA [15] model, proposed for joint

word-image modeling, has since been applied to problems in bioinformatics [314].

Probabilistic graphical models such as 2-D multiresolution hidden Markov mod-

els [163] and cross-media relevance models [127], though primarily used for image

annotation applications, are contributions to machine learning research. Similarly,

multiple instance learning research has benefited by work on image categoriza-

tion [42]. Active learning using SVMs were proposed for relevance feedback [259]

and helped popularize active learning in other domains as well.

Automatic learning of a similarity metric or distance from ground-truth data

has been explored for various task such as clustering and classification. One way

to achieve this is to learn a generalized Mahalanobis distance metric, such as those

general-purpose methods proposed in [298, 8]. On the other hand, kernel-based

learning of image similarity, using context information, with applications to image

clustering was explored in [292]. This could potentially be used for more generic

cases of metric learning given side-information. In the use of a Mahalanobis met-

ric for distance computation, an implicit assumption is that the underlying data

distribution is Gaussian, which may not always be appropriate. An important

work uses a principled approach to determine appropriate similarity metrics based

on the nature of underlying distributions, which is determined using ground-truth

data [234]. In a subsequent work, a boosting approach to learning a boosted dis-

tance measure that is analogous to the weighted Euclidean norm, has been applied

to stereo matching and video motion tracking [302] and classification/recognition

tasks on popular datasets [5].

Discussion: When it comes to recognizing pictures, even humans undergo a

learning process. So it is not surprising to see the synergy between machine learning

and image retrieval, when it comes to training computers to do the same. In fact,

the challenges associated with learning from images have actually helped push the

scientific frontier in machine learning research in its own right.
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Table 2.3. A qualitative requirement analysis of various CBIR offshoots.
Applications
& Offshoots

Similarity
measure

User feed-
back

Machine
learning

Visualization Scalability

Automatic
annotation

optional optional essential optional optional

Image-
based
CAPTCHA

essential essential optional essential essential

Visual aes-
thetics

optional desirable essential desirable optional

Web image
search

essential optional optional essential essential

2.3.6 Epilogue

While Sec. 2.2 discussed techniques and real-world aspects of CBIR, in this section,

we have described applications that employ those techniques. In Table 2.3 we

present a qualitative requirement analysis of the various applications, involving

a mapping from the aspects (techniques and features) to these applications. The

entries are intended to be interpreted in the following manner:

• Essential - Aspects that are required in all scenarios.

• Optional - Aspects that may/may not be critical depending on the specifics.

• Desirable - Aspects that are likely to add value to the application in all cases.

The distinction between classifying an aspect as ‘optional’ or ‘desirable’ can be

understood by the following examples. Scalability for automatic annotation is

termed ‘optional’ here because such an application can serve two purposes: (1) to

be able to quickly tag a large number of pictures in a short time, and (2) to be able

to produce accurate and consistent tags to pictures or to refine existing noisy tags,

perhaps as an off-line process. Because of the compromise made in these two goals,

their scalability requirement may be different. As a second example, consider that

in art image analysis, having an expert user to be involved in every step of the

analysis is highly ‘desirable’, unlike in large scale image annotation, where a user

validation at each step may be infeasible.
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2.4 Summary

In this chapter, we have presented a comprehensive survey, highlighting current

progress, emerging directions, and the spawning of new fields relevant to the young

and exciting field of image retrieval. We have contrasted early years of image

retrieval with the progress in the current decade, and conjectured specific future

directions alongside. We believe that the field will experience a paradigm shift in

the foreseeable future, with the focus being more on application-oriented, domain-

specific work, generating considerable impact in day-to-day life.

In Appendix A, as part of an effort to understand the field of image retrieval

better, we compiled research trends in image retrieval using Google Scholar’s

search tool, which presents citation counts as well. Graphs for publication and

citation counts have been generated for (1) sub-fields of image retrieval, and (2)

venues/journals relevant to image retrieval research. Further analysis has been

made on the impact that image retrieval has had in merging interests among dif-

ferent fields of study, such as multimedia (MM), machine learning (ML), informa-

tion retrieval (IR), computer vision (CV), and human-computer interaction (HCI).

Firstly, the trends indicate that the field is extremely diverse, and can only grow

to be more so in the future. Second, we note that image retrieval has likely caused

a number of otherwise-unrelated fields of research to be brought close together.

Third, interesting facts have emerged, such as: Most of the CV and AI work re-

lated to image retrieval have been published in information retrieval related venues

and received high citations. At the same time, AI related work published in CV

venues have generated considerable impact. At a higher level, the trends indicate

that while systems, feature extraction, and relevance feedback have received a lot

of attention, application-oriented aspects such as interface, visualization, scalabil-

ity, and evaluation have traditionally received lesser consideration. We believe that

these aspects will enjoy growing importance over time, as the focus moves toward

real-world implementation.

The quality (resolution and color depth), nature (dimensionality), and through-

put (rate of generation) of images acquired have all been on an upward growth path

in the recent times. With the advent of very large scale images (e.g., Google and

Yahoo! aerial maps), biomedical and astronomical imagery which are typically of
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high resolution/dimension and are often captured at high throughput, pose yet

new challenges to image retrieval research. A long term goal of research should

therefore also include the ability to make high-resolution, high-dimension, and

high-throughput images searchable by content. The future of image retrieval de-

pends a lot on the collective focus and overall progress in each aspect of image

retrieval, and how much the average individual stands to benefit from it.



Chapter 3
Bridging the Semantic Gap:

Improving Image Search via

Automatic Annotation

Quick ways to capture pictures, cheap devices to store them, and convenient mech-

anisms for sharing them are all part and parcel of our daily lives today. There is

indeed a very large amount of pictures to deal with. Naturally, everyone will

benefit if there exist smart programs to manage picture collections, tag them au-

tomatically, and make them searchable by keywords. To satisfy such needs, the

multimedia, information retrieval, and computer vision communities have, time

and again, attempted automated image annotation, as we have witnessed in the

recent past [9, 34, 163, 193]. While many interesting ideas have emerged, we have

not seen much attention paid to the direct use of automatic annotation for image

search. Usually, it is assumed that good annotation implies quality image search.

Moreover, most past approaches are too slow for the massive picture collections of

today to be of practical use. Much remains to be achieved.

The problem would not be interesting if all pictures came with tags, which in

turn were reliable. Unfortunately, for today’s picture collections such as Yahoo!

Flickr, this is seldom the case. These collections are characterized by their mam-

moth volumes, lack of reliable tags, and the diverse spectrum of topics they cover.

In Web image search systems such as those of Yahoo! and Google, surrounding

text form the basis of keyword search, which come with their own problems.
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Figure 3.1. Four common scenarios for real-world image retrieval.

In this chapter, we discuss our attempt to build an image search system on the

basis of automatic tagging. Our goal is to treat automatic annotation as a means

of satisfactory image search. We look at realistic scenarios that arise in image

search, and propose a framework that can handle them through a unified approach.

To achieve this, we look at how pictures can be accurately and rapidly placed

into a large number of categories, how the categorization can be used effectively

for automatic annotation, and how these annotations can be harnessed for image

search. For this, we use novel statistical models and the WordNet ontology [190],

and use state-of-the-art content based image retrieval (CBIR) methods [59, 242,

278] for comparison.

In summary, our contributions are: (1) We propose a novel structure com-

position (S-C) model based on Beta distributions, aimed at capturing the spatial

structure and composition of generic picture categories. Empirically, we find this

model to be helpful in characterizing challenging picture categories. (2) We com-

bine this S-C model with a color-texture Gaussian mixture model to generate rapid

picture categorization involving upto 600 different categories, which also improves

over best reported accuracy results on this problem. (3) We propose a novel tag-

ging mechanism which considers (a) the evidence provided by the categorization

results for potential tags, (b) the chance occurrence of these tags, and (c) the

coherence each tag has with the remaining pool of candidate tags, as evidenced

by WordNet. (4) To the best of our knowledge, this is the first formal work on

using annotation directly for image search. Our method significantly outperforms

competing strategies in all cases, producing some unexpected results as well.



70

3.0.1 Bridging the Gap

Our motivation to ‘bridge’ the annotation-retrieval gap is driven by a desire to

effectively handle challenging cases of image search in a unified manner. These

cases are schematically presented in Fig. 3.1, and elucidated below.

• Scenario 1: Either a tagged picture or a set of keywords is used as query.

Problem arises when part or whole of the image database (e.g., Web images)

is not tagged, making this portion inaccessible through text queries. We

study how our annotation-driven image search approach performs in first

annotating the untagged pictures, and then performing multiple keyword

queries on the partially tagged picture collection.

• Scenario 2: An untagged image is used as query, with the desire to find

semantically related pictures or documents from a tagged database or the

Web. We look at how our approach performs in first tagging the query

picture and then doing retrieval.

• Scenario 3: The query image as well as part/whole of the image database

are untagged. This is the case that best motivates CBIR, since the only

available information is visual content. We study the effectiveness of our

approach in tagging the query image and the database, and subsequently

performing retrieval.

• Scenario 4: A tagged query image is used to search on a tagged image

database. The problem is that these tags may be noisy and unreliable, as is

common in user-driven picture tagging portals. We study how our approach

helps improve tagging by re-annotation, and subsequently performs retrieval.

In each case, we look at reasonable and practical alternative strategies for search,

with the help of a state-of-the-art CBIR system. For scenario 4, we are also

interested in analyzing the extent to which our approach helps improve annotation

under varying levels of noise. Additional goals include the ability to generate

precise annotations of pictures in near-realtime. While most previous annotation

systems assess performance based on the quality of annotation alone, this is only

a part of our goal. For us, the main challenge is to have the annotations help
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generate meaningful retrieval. To this end, we develop our approach as follows.

We first build a near-realtime categorization algorithm (∼ 11 sec/image) capable

of producing accurate results. We then proceed to generate annotation on the

basis of categorization, ensuring high precision and recall. With this annotation

system in place, we assess its performance as a means of image search under the

preceding scenarios.

3.1 Model-based Categorization

We employ generative statistical models for accurate, near-realtime categorization

of generic images. This implies training independent statistical models for each

image category using a small set of training images. Assignment of category labels

to new pictures can then be done by a smart utilization of the likelihoods over

all models. In our system, we use two generative models (per image category) to

provide ‘evidence’ for categorization from two different aspects of the images. We

generate final categorization by combining these evidences.

Formally, let there be a feature extraction process or function = that takes in

an image I and returns a collection of D feature vectors, each of dimension V , i.e.,

=(I) has dimension D×V , D varying with each image. Given C categories and N

training images per category, each of C models Mk, k = 1, .., C with parameters θk

are built using training images Ik
i , i = 1, .., N , by some parameter estimation tech-

nique. Suppose the collection of feature vectors, when treated as random variables

{X1, .., XD}, can be assumed conditionally independent given model parameters

θk. For a test image I, given that =(I) = {x1, .., xD} is extracted, the log-likelihood

of I being generated by model Mk is

`1(I|Mk) = log p(x1, .., xD|θk) =
D∑

d=1

log p(xd|θk) . (3.1)

Assuming equal category priors, a straightforward way to assign a category label

y to I would be to have

y(I) = arg max
k

`1(I|Mk).
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Now consider that we have another set of C generative models trained on a differ-

ent set of image features and with a different underlying statistical distribution.

Suppose the log-likelihoods generated by these models for the same image I are

{`2(I|M1), .., `2(I|MC)}. Each category of generic images is typically described

by multiple tags (e.g., tiger, forest, and animal for a tiger category). Given a

large number of categories, many of them having semantic/visual overlaps (e.g.,

night and sky, or people and parade), the top ranked category alone from either

model may not be accurate. One way to utilize both models in the categoriza-

tion process is to treat them as two experts independently examining the images

from two different perspectives, and reporting their findings. The findings are not

limited to the two most likely categories for each model, but rather the entire set

of likelihoods for each category, given the image. Hence, an appropriate model

combination strategy ρ(·) may be used to predict the image categories in a more

general manner:

y(I) = ρ
(
`1(I|M1), .., `1(I|MC), `2(I|M1), .., `2(I|MC)

)
. (3.2)

For a large number of generic image categories, building a robust classifier is

an uphill task. Feature extraction is extremely critical here, since it must have

the discriminative power to distinguish between a broad range of image categories,

no matter what machine learning technique is used. We base our models on the

following intuitions: (1) For certain categories such as sky, marketplace, ocean,

forests, Hawaii, or those with dominant background colors such as paintings, color

and texture features may be sufficient to characterize them. In fact, a structure

or composition for these categories may be too hard to generalize. (2) On the

other hand, categories such as fruits, waterfall, mountains, lions, and birds may

not have dominating color or texture but often have an overall structure or com-

position which helps us identify them despite heavily varying color distributions.

In [163], the authors use 2-D multi-resolution hidden Markov models (2-D MH-

MMs) to capture the inter-scale and intra-scale dependence of block-based color

and texture based features, thus characterizing the composition/structure of im-

age categories. Problems with this approach are that the dependence modeling

is over relatively local image regions, the parameter estimation algorithm involves

numerical approximation, and the overall categorization process is slow. While our
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work is inspired by similar motivations, we aim at near-realtime and more accu-

rate categorization. We thus build two models to capture different visual aspects,

(1) a structure-composition model that uses Beta distributions to capture color

interactions in a very flexible but principled manner, and (2) a Gaussian mixture

model in the joint color-texture feature space. We now elaborate on each model.

3.1.1 Structure-Composition (S-C) Models

The idea of building such a feature arose from a desire to represent how the colors

interact with each other in certain picture categories. The average beach picture

could be described by a set of relationships between different colored regions, e.g.,

orange (sun) completely inside light-blue (sky), light-blue sharing a long border

with dark-blue (ocean), dark-blue sharing a long border with brown (sand) etc. For

tiger images, this description could be that of yellow and black regions sharing very

similar borders with each other (stripes) and rest of the colors interacting without

much pattern or motif. Very coarse texture patterns such as pictures of beads of

different colors (not captured well by color distribution or localized texture features

such as wavelets) could be described as any color (bead) surrounding any other

color (bead), some color (background) completely containing most colors (beads),

and so on. This idea led to a principled statistical formulation of rotational and

scale invariant structure-composition (S-C) models.

Given the set of all training images across categories, we take every pixel from

each image, converted to the perceptually uniform LUV color space. We thus

have a very large population of LUV vectors in the
� 3 space representing the

color distribution within the entire training set. The K-means geometric clustering

with uniform initialization is performed on a manageable random sub-sample to

obtain a set of S cluster centroids {T1, .., TS}, e.g., shades of red, yellow etc. We

then perform a nearest-neighbor based segmentation on each training image I by

assigning a cluster label to each pixel (x, y) as follows:

J(x, y) = arg min
i
|Iluv(x, y)− Ti| . (3.3)

In essence, we have quantized the color space for the entire set of training images

to obtain a small set of representative colors. This helps to build a uniform model
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Figure 3.2. The idea behind the S-C model, shown here on a toy image. We denote
the perimeters of each segment by Θ and the border lengths between pairs of segments
by ∆. Intuitively, ∆/Θ ratios for the orange, light-blue (sun and sky) and white, light-
blue (clouds and sky) pairs equals 1 since sun and cloud perimeters coincide with their
borders shared with sky. In general, the ratio has low value when segments are barely
touching, and near 1 when a segment is completely contained within another segment.

representation for all image categories. To uniquely identify each segment in the

image, we perform a two-pass 8-connected component labeling on J . The image J

now has P connected components or segments {s1, .., sP}. The many-to-one into

mapping from a segment si to a color Tj is stored and denoted by the function

G(si). Let χi be the set of neighboring segments to segment si. Neighborhood in

this sense implies that for two segments si and sj, there is at least one pixel in

each of si and sj that is 8-connected. We wish to characterize the interaction of

colors by modeling how each color shares (if at all) boundaries with every other

color. For example, a red-orange interaction (in the quantized color space) for a

given image category will be modelled by how the boundaries are shared between

every red segment with every other orange segment for each training image, and

vice-versa (See Fig.3.2). More formally, let (x, y)⊕ B indicate that pixel (x, y) in

J is 8-connected to segment B, and let � (x, y) denote the set of its 8 neighboring

points (not segments). Now we define a function ∆(si, sj) which denotes the length
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of the shared border between a segment si and its neighboring segment sj, and a

function Θ(si) which defines the total length of the perimeter of segment si,

∆(si, sj) =
∑

(x,y)∈si

In((x, y)⊕ sj), sj ∈ χi, and (3.4)

Θ(si) =
∑

(x,y)∈si

In( � (x, y) 6⊂ si), (3.5)

where In(·) is the indicator function. By this definition of � , inner borders

(e.g. holes in donut shapes) and image boundaries are considered part of seg-

ment perimeters. We want to model the ∆/Θ ratios for each color pair by some

statistical distribution. For random variables bounded in the [0, 1] range, the Beta

distribution is a flexible continuous distribution defined in the same range, with

shape parameters (α, β). The Beta density function is defined as

f(x; α, β) =
1

B(α, β)
xα−1(1− x)β−1, given (3.6)

B(α, β) =

∫ 1

0

vα−1(1− v)β−1dv =
Γ(α)Γ(β)

Γ(α + β)
, (3.7)

where Γ(x) =
∫∞
0

tz−1e−tdt is the well-known Gamma function. Our goal is to

build models for each category such that they consist of a set of Beta distributions

for every color pair. For each category, and for every color pair, we find each

instance in the N training images in which segments of that color pair share a

common border. Let the number of such instances be η. We then compute the

corresponding set of ∆/Θ ratios and estimate a Beta distribution (i.e., parameters

α and β) using these values for that color pair. The overall structure-composition

model for a given category k thus has the following form:

k 1 2 ... S

1 n/a α, β, η ... α, β, η

2 α, β, η n/a ... ...

... ... ... ... α, β, η

S α, β, η ... α, β, η n/a

Note that it is not possible to have segments with the same color as neighbors. Thus
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Figure 3.3. Steps toward generating the structure-composition model. On the left,
we have three training pictures from the ‘bus’ category, their segmented forms, and a
matrix representation of their segment adjacency counts. On the right, the corresponding
matrix representations over all three training pictures are shown. Finally, these matrices
are combine to produce the structure-composition model, shown here schematically as a
matrix of Beta parameters and counts.

parameters of the form α(i, i), β(i, i) or η(i, i) do not exist, i.e., same color pair

entries in the model are ignored, denoted here by ‘n/a’. Note also that the matrix

is not symmetric, which means the color pairs are ordered, i.e., we treat yellow-

orange and orange-yellow color interactions differentially, for example. Further,

the number of samples η used to estimate the α and β are also stored with the

corresponding entries as part of the model. The reason for doing so will be evident

shortly.

For the estimation of α and β, a moment matching method is employed for its

computational efficiency. Given a set of η(i, j) ∆/Θ samples for a given color pair

(i, j), having values {x1, .., xη(i,j)}, the parameters are estimated as follows:

α(i, j) = x̄
((

x̄(1−x̄)
s2

)
− 1
)

β(i, j) = (1− x̄)
((

x̄(1−x̄)
s2

)
− 1
)

Here x̄ = 1
η(i,j)

∑η(i,j)
k=1 xk, s

2 = 1
η(i,j)

∑η(i,j)
k=1 (xk − x̄)2 . There are two issues with
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estimation in this manner, (1) the estimates are not defined for η ≤ 1, and (2) for

low values of η, estimation is poor. Yet, it is realistic for some categories to have

few or no training samples for a given color pair, where estimation will be either

poor or impossible respectively. But, low occurrence of neighboring segments of

certain color pairs in the training set may or may not mean they will not occur in

test images. To be safe, instead of penalizing the occurrence such color pairs in

test images, we treat them as “unknown”. To achieve this, we estimate parameters

α′k and β ′k for the distribution of all ∆/Θ ratios across all color pairs within a given

category k of training images, and store them in the models as prior distributions.

The overall process of estimating S-C models, along with their representation, can

be seen in Fig. 3.3.

During categorization, we segment a test image in exactly the same way we

performed the training. With the segmented image, we obtain the set of color

interactions characterized by ∆/Θ values for each segment boundary. For a given

sample x = ∆/Θ coming from color pair (i, j) in the test image, we compute its

probability of belonging to a category k. Denoting the stored parameters for the

color pair (i, j) for model k as α, β and η, we have

Psc(x|k) =

{
f(x|α′k, β ′k), η ≤ 1

η
η+1

f(x|α, β) + 1
η+1

f(x|α′k, β ′k), η > 1

where Psc is the conditional p.d.f. for the S-C model. What we have here is

typically done in statistics when the amount of confidence in some estimate is low.

A weighted probability is computed instead of the original one, weights varying

with the number of samples used for estimation. When η is large, η/(η + 1) → 1

and hence the distribution for that specific color pair exclusively determines the

probability. When η is small, 1/(η + 1) > 0 in which case the probability from the

prior distribution is given considerable importance. This somewhat solves both

the problems of undefined and poor parameter estimates. It also justifies the need

for storing the number of samples η as part of the models.

The S-C model is estimated for each training category k ∈ {1..C}. Each

model consists of 3S(S − 1) parameters {αk(i, j), βk(i, j), ηk(i, j)}, i ∈ {1..S}, j ∈
{1..S}, i 6= j, and parameters for the prior distribution, α′k and β ′k as explained.

This set of parameters constitute θk, the parameter set for category k. We build and
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Caves Vegetables Pyramids

Figure 3.4. Sample categories and corresponding structure-composition model rep-
resentations. Top: Sample training pictures. Middle: Matrices of segment adjacency
counts. Bottom: Matrices of mean ∆/Θ ratios. Brightness levels represent relative
magnitude of values.

store such models for every category. In Fig. 3.4, we show simple representations of

the learned models for three such picture categories. The feature extraction process

=(I) generates the ∆/Θ ratios and the corresponding color-pairs for a given image

I. We thus obtain a collection of D (varying with each image) feature vectors

{x1, .., xD}, where each xd = {∆d/Θd, id, jd}. We assume conditional independence

of each xd. Hence, using equation (3.1), we have

`sc(I|Mk) =
D∑

d=1

log Psc

(
∆d/Θd|θk(id, jd)

)
. (3.8)
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3.1.1.1 Fast Computation of S-C model Features

We wish to have a low complexity algorithm to compute the ∆/Θ ratios for a

given image (training or testing). As discussed, these ratios can be computed in a

naive manner as follows: (1) Segment the image by nearest neighbor assignments

followed by connected component labeling. (2) For each segment, compute its

perimeter (Θ), and length of border (∆) shared with each neighboring segment.

(3) Compute the ∆/Θ ratios and return them (along with the corresponding color

pairs) for modeling or testing, whichever the case. This algorithm can be sped as

follows. Denote the segment identity associated with each pixel (x, y) by s(x, y).

Each (x, y) is either (1) an interior pixel, not bordering any segment or the image

boundary, (2) a pixel that is either bordering two or more segments, or is part of

the image boundary, or (3) a pixel that has no neighboring segments but is part

of the image boundary. Pixels in (1) do not contribute to the computation of ∆

or Θ and hence can be ignored. Pixels in (2) are both part of the perimeter of

segment s(x, y) and the borders between s(x, y) and each neighboring segment sk

(i.e., (i, j) ⊕ sk). Pixels in (3) are only part of the perimeter of s(i, j). Based on

this, a single-pass algorithm for computing the S-C feature vector {x1, .., xD} of an

image I is presented in Fig. 3.5.

The set of ordered triplets [xd, G(i), G(j)] can now be used to build Beta distri-

butions with parameters α(G(i), G(j)) and β(G(i), G(j)), provided no. of samples

η(G(i), G(j)) > 1. Besides the two-pass connected component labeling, only a sin-

gle scanning of the image is required to compute these features. It is not hard to see

that this algorithm can be embedded into the two-pass connected component la-

beling algorithm to further improve speed. Note that though the asymptotic order

of complexity remains the same, the improved computational efficiency becomes

significant as the image database size increases.

3.1.2 Color-Texture (C-T) Models

Many image categories, especially those that do not contain specific objects, can be

best described by their color and texture distributions. There may not even exist

a well-defined structure per se, for high-level categories such as China and Europe,

but the overall ambience formed the colors seen in these images often help identify
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Single-pass Computation of S-C Model Features

Pair(1..P,1..P) ← 0 [P = No. of segments]
Perim(1..P) ← 0
for each pixel (x, y) in I

k← 0; Z← φ
for each 8-neighbor (x′,y′) ∈ D(x,y)

if (x′,y′) is inside image boundary
if s(x′,y′) 6= s(x,y) and s(x′,y′) is unique

Z ← Z ∪ s(x′,y′)
k← 1

else
k← 1

for each s′ ∈ Z
Pair(s(x,y), s′)← Pair(s(x,y), s′) + 1

if k = 1
Perim(s(x,y)) ← Perim(s(x,y)) + 1

[Now Generate ∆/Θ ratios : =(I) = {x1, .., xD}]
d← 0
for i ← 1 to P

for j ← 1 to P
if Pair(i, j) > 0 [(i,j) segments shared border]

d← d + 1
∆d ← Pair(i, j);Θd ← Perim(i)
xd ←∆d/Θd

return [xd,G(i),G(j)]
[G(·) - maps segment to color]

Figure 3.5. Algorithm for computing S-C features.

them. A mixture of multivariate Gaussians is used to model the joint color-texture

feature space for a given category. The motivation is simple; in many cases, two

or more representative regions in the color/texture feature space can represent the

image category best. For example, beach pictures typically have one or more yellow

areas (sand), a blue non-textured area (sky), and a blue textured region (sea).

Gaussian mixture models (GMMs) are well-studied, with many tractable properties

in statistics. Yet, these simple models have not been widely exploited in generic

image categorization. Recently, GMMs have been used effectively for outdoor scene

classification and annotation [168]. After model estimation, likelihood computation

at testing is typically very fast.

Let a Gaussian mixture model have λ components, each of which is parame-

terized by θk = {ak, µk, Σk}, k = 1..λ, where a is the component prior, µ is the
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component mean, and Σ is the component covariance matrix. Given a feature

vector x ∈ � m , the joint probability density function of component k is defined as

f(x|θk) =
1

ζ
exp

(−(x− µk)
T Σ−1

k (x− µk)

2

)

where ζ =
√

(2π)m‖Σk‖. Hence the mixture density is f(x) =
∑λ

k=1 akf(x|θk).

The feature vectors in the C-T model are the same as those used in [163], where a

detailed description can be found. Each training image is divided into 4× 4 non-

overlapping blocks, and a 6-dimensional feature vector x is extracted from each

block. Three components are the mean LUV color values within the block, and the

other three are moments of Daubechies-4 wavelet based texture coefficients. Our

feature extraction process = for the color-texture model thus takes in an image I

and computes =(I) = {x1, .., xD}, xi ∈
� 6 , D depending on the image dimensions.

The parameters of GMMs are usually estimated iteratively using the Expec-

tation Maximization (EM) algorithm, since there is no closed form solution to its

maximum likelihood based estimate. Here, for each category c, the feature vectors

=(Ic
i ) (or a subset) obtained from each training image I c

i , i = 1..N are used for

building model Mc. We use Bouman’s ‘cluster’ package [21] to do the modelling.

This package allows λ to be specified, and then adaptively chooses the number

of clusters less than or equal to λ, using Rissanen’s minimum description length

(MDL) criteria. Thus we use the feature set {=(I c
1), ..,=(Ic

N)} and λ to generate C

models Mc, c = 1..C. A test image I is thus represented by a collection of feature

vectors =(I) = {x1, .., xD}, xd ∈
� 6 . Here, our conditional independence assump-

tion given model Mc is based on ignoring spatial dependence of the block features.

However, spatial dependence is expected to be captured by the S-C model. Thus,

based on Eq. 3.1, the log-likelihood of Mc generating I is

`ct(I|Mc) =
D∑

d=1

log(
λ∑

k=1

ac
kf(xd|µc

k, Σ
c
k)). (3.9)

For both models, the predicted categories for a given image I are obtained in rank

order by sorting them by likelihood scores `sc(I|·) and `ct(I|·) respectively.
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3.2 Annotation and Retrieval

The categorization results are utilized to perform image annotation. Tagging an

image with any given word entails three considerations, namely (1) frequency of oc-

currence of the word among the evidence provided by categorization, (2) saliency

of the given words, i.e., as is traditional in the text retrieval community, a fre-

quently occurring word is more likely than a rare word to appear in the evidence

by chance, and (3) the congruity (or fitness) of the word with respect to the entire

set of words under consideration. Suppose we have a 600 category training image

dataset (the setting for all our retrieval experiments), each category annotated by

3 to 5 tags, e.g., [sail, boat, ocean] and [sea, fish, ocean], with many tags shared

among categories. Initially, all the tags from each category are pooled together.

Tag saliency is measured in a way similar to computing inverse document frequency

(IDF) in the document retrieval domain. The total number of categories in the

database is C. We count the number of categories which contain each unique tag

t, and denote it by F (t). For a given test image I, the S-C models and the C-T

models independently generate ranked lists of predicted categories. We choose the

top 10 categories predicted by each model and pool them together for annotation.

We denote the union of all unique words from both models by U(I), which forms

the set of candidate tags. Let the frequency of occurrence of each unique tag t

among the top 10 model predictions be fsc(t|I) and fct(t|I) respectively.

WordNet [190] is a semantic lexicon which groups English words into sets of

synonyms and records the semantic relations among the synonym sets. Based on

this ontology, a number of measures of semantic relatedness among words have been

proposed. A measure that we empirically observe to produce reasonable relatedness

scores among common nouns is the Leacock and Chowdrow (LCH) measure [153],

which we use in our experiments. We convert the relatedness measure rLCH from

a [0.365, 3.584] range to a distance measure dLCH in the [0, 24] range using the

mapping dLCH(t1, t2) = exp(−rLCH(t1, t2) + 3.584)− 1 for a pair of tags t1 and t2.

Inspired by the idea proposed in [131], we measure congruity for a candidate tag t

by

G(t|I) =
dtot(I)

dtot(I) + |U(I)|∑x∈U(I) dLCH(x, t)
(3.10)
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where dtot(I) =
∑

x∈U(I)

∑
y∈U(I) dLCH(x, y) measures the all-pairwise semantic

distance among candidate tags, generating scores in the [0, 1] range. Essentially, a

tag that is semantically distinct from the rest of the words predicted will have a low

congruity score, while a closely related one will have a high score. The measure can

potentially remove noisy and unrelated tags from consideration. Having computed

the three measures, for each of which higher scores indicate greater support for

inclusion, the overall score for a candidate tag is given by a linear combination as

follows:

R(t|I) = a1f(t|I) +
a2

log C
log
( C

1 + F (t)

)
+ a3G(t|I) (3.11)

Here, a1+a2+a3 = 1, and f(t|I) = bfsc(t|I)+(1−b)fct(t|I) is the key model combi-

nation step for the annotation process, linearly combining the evidence generated

by each model toward tag t. Experiments show that combination of the models

helps in annotation significantly over either model. The value of b is a measure of

relative confidence in the S-C model. A tag t is chosen for annotation only when its

score is within the top ε percentile among the candidate tags, where ε intrinsically

controls the number of annotations generated per image. Hence, in the annotation

process, we are required to specify values of four parameters, namely (a1, a2, b, ε).

We perform annotation on a validation set of 1000 images and arrive at desirable

values of precision/recall for a1 = 0.4, a2 = 0.2, b = 0.3, and ε = 0.6.

3.2.1 Performing Annotation-driven Search

We retrieve images using automatic annotation and the WordNet-based bag of

words distances. Whenever tags are missing in either the query image or the

database, automatic annotation is performed, and bag of words distance between

query image tags and the database tags are computed. The images in the database

are ranked by relevance based on this distance. We briefly describe the bag of words

distance used in our experiments, inspired by the average aggregated minimum

(AAM) distance proposed in [159]. The WordNet-based LCH distance dLCH(·, ·)
is again used to compute semantic distances between bags of words in a robust

manner. Given two bags of words, Wi = {wi,1, ..., wi,mi
} and Wj = {wj,1, ..., wj,nj

},
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we have the distance between them

d̂(Wi,Wj) =
1

2mi

mi∑

k=1

d(wi,k,Wj) +
1

2mj

mj∑

k=1

d(wj,k,Wi) (3.12)

where d(wi,k, Wj) = minwj,l∈Wj
dLCH(wi,k, wj,l). Naturally, d̂(Wi, Wi) is equal to

zero. In summary, the approach attempts to match each word in one bag to the

closest word in the other bag and compute the average semantic distance over all

such closest matches.

3.3 Experimental Validation

We investigate the performance of our system on four grounds, namely (1) how

accurately it identifies picture categories, (2) how well it tags pictures, (3) how well

it performs re-annotation of noisy tags, and (4) how much improvement it achieves

in terms of image search, for the four scenarios described earlier. Note, however,

that the improvement in image search quality is the main focus of this work. The

datasets we look at consist of (a) 54, 000 Corel Stock photos encompassing 600

picture categories, and (b) a 1000 picture collection from Yahoo! Flickr. Of the

Corel collection, we use 24, 000 to train the two statistical models, and use the rest

for assessing performance.

3.3.1 Identifying Picture Categories

In order to fuse the two models for the purpose of categorization, we use a simple

combination strategy [116] that results in impressive performance. Given a picture,

we rank each category k based on likelihoods from both models, to get ranks

πsc(k) and πct(k). We then linearly combine these two ranks for each category,

π(k) = σπsc(k) + (1 − σ)πct(k), with σ = 0.2 working best in practise. We then

assign that category, which yields the highest linearly combined score, to this

picture.

We decide how well our system is doing in predicting categories by involving

two picture datasets. The first one is a standard 10-class image dataset that have

been commonly used for the same research question. Using 40 training pictures

per category, we assess the categorization results on another 50 per category. We
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Figure 3.6. Categorization accuracies for the 10-class experiment are shown. Per-
formance of our combined S-C+ C-T model is shown with varying number of mixture
components in the C-T model. Previously reported best results shown for comparison.

compute accuracies while varying the number of mixture components in the C-T

model. We present our results along with those that were previously reported on

the same data, in Fig. 3.6. We see that our combined model does a better job at

identifying categories than previous attempts. Not surprisingly, as we increase the

number of mixture components, the C-T models become more refined. We thus

continue to get improved categorization performance with greater components, al-

though more components mean more computation as well. Our second dataset

consists of the same 600 category Corel images that were used in the ALIP sys-

tem [163]. With an identical training process for the two models (the number of

mixture components is chosen as 10), we observe the categorization performance

on a separate set of 27, 000 pictures. What we find is that the actual picture

categories coincide with our system’s top choice 14.4% of times, within top two

choices 19.3% of the times, and within top three choices 22.7% of the times. The

corresponding accuracy values for the ALIP system are 11.9%, 17.1%, and 20.8%.

Our system takes about 26 seconds to build a structure-composition category

model, and about 106 seconds to build a color-texture model, both on a 40 picture

training set. As with generative models, we can independently and parallelly build
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Our
Labels

sky, city, modern,
building, Boston

door, pattern,
Europe, historical
building, city

train, car, people,
life, city

man, office, in-
door, fashion,
people

Flickr
Labels

Amsterdam,
building,
Mahler4, Zuidas

Tuschinski, Ams-
terdam

honeymoon, Ams-
terdam

hat, Chris, cards,
funny

Our
Labels

lake, Europe,
landscape, boat,
architecture

lion, animal, wild
life, Africa, super-
model

speed, race, peo-
ple, Holland, mo-
torcycle

dog, grass, ani-
mal, rural, plant

Flickr
Labels

Amsterdam,
canal, water

leopard, cat,
snagged photo,
animal

Preakness, horse,
jockey, motion,
unfound photo,
animal

Nanaimo Torg-
ersons, animal,
Quinn, dog,
cameraphone

Figure 3.7. Sample automatic tagging results on some Yahoo! Flickr pictures taken in
Amsterdam, show along with the manual tags.

the models for each category and type. To predict the top five ranked categories

for a given test picture, our system takes about 11 seconds. Naturally, we have a

system that is orders of magnitude faster than the ALIP system, which takes about

30 minutes to build a model, and about 20 minutes to test on a picture, all else

remaining the same. Most other automatic tagging systems in the literature do not

explicitly report speed. However, a number of them depend on sophisticated image

segmentation algorithms, which can well become the performance bottleneck. The

improved performance in model building means that (1) even larger number of

models can be built, e.g., one model per unique tag, and (2) the modeling process

can be made dynamic (re-training at intervals) to accommodate changing picture

collections, e.g., Web sites that allow users to upload pictures.
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3.3.2 Tagging the Pictures

We now look at how our system performs when it comes to automatic picture

tagging. Tagging is fast, since it depends primarily on the speed of categorization.

Over a random test set of 10, 000 Corel pictures, our system generates about seven

tags per picture, on an average. We use standard metrics for evaluating annotation

performance. These are precision, the fraction of tags predicted that are actually

correct, and recall, the fraction of actual tags for the picture that are correctly

guessed. We find that average precision over this test set is 22.4%, while average

recall is 40.7%. Thus, on an average, roughly one in four of our system’s predicted

tags are correct, while two in five correct tags are guessed by our system. In gen-

eral, results of this nature can be used for filtering and classification purposes. A

potential domain of thousands of tags can be reduced to a handful, making human

tagging much easier, as used in the ALIPR system (http://www.alipr.com). In-

creased homogeneity and reduced ambiguity in the tagging process are additional

benefits.

We make a more qualitative assessment of tagging performance on the 1, 000

Flickr pictures. We point out that the training models are still those built with

Corel pictures, but because they represent the spectrum of photographic images

well, they serve as fair ‘knowledge bases’. We find that in this case, most automat-

ically generated tags are meaningful, and generally very encouraging. In Fig. 3.7,

we present a sampling of these results. Getting quantitative performance is harder

here because Flickr tags are often proper nouns (e.g., names of buildings, people)

that are not contained in our training base.

3.3.3 Re-annotating Noisy Tags

We assess the performance of our annotation system in improving tagging at high

noise levels. The scenario of noisy tags, at a level denoted by e, is simulated in

the following manner. For each of 10, 000 test pictures with the original (reliable)

tags, a new set of tags are generated by replacing a tag by a random tag e fraction

of the times, at random, and are unchanged at other times. The resultant noisy

tags for these test images, when assessed for performance, give precision and recall

values that are directly correlated with e. In the absence of learned models, this



88

0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

Noise Level  e

A
ve

ra
ge

 A
nn

ot
at

io
n 

P
re

ci
si

on
 (i

n 
%

)

Our Re−annotation
Baseline

0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

Noise Level  e

A
ve

ra
ge

 A
nn

ot
at

io
n 

R
ec

al
l (

in
 %

)

Our Re−annotation
Baseline

Figure 3.8. Precision (left) and recall (right) achieved by re-annotation, with varying
noise levels in original tags. Note that the linear correlation of the baseline case to e is
intrinsic to the noise simulation.
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Figure 3.9. Precision (left) and recall (right) achieved by re-annotation, varying pa-
rameter Z, shown for 5 noise levels.

is our baseline case. When such models are available, we can use the noisy tags

and the categorization models to re-annotate the pictures, because the noisy tags

still contain exploitable information. We perform re-annotation by simply treating
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each noisy tag t of a picture I as an additional instance of the word in the pool

of candidate tags. In effect, we increment the values of fsc(t|I) and fct(t|I) by

a constant Z, thus increasing the chance of t to appear as an actual tag. The

value of Z controls how much we wish to ‘promote’ these tags, and is naturally

related to the noise in the tags. The annotation precision and recall achieved

by this approach, with e varying from 0.5 (moderately noisy) to 1 (completely

noisy, no useful information) for the case of Z = 0.5 is shown Fig. 3.8. We notice

that at high levels of noise, our re-annotation produces better performance than

the baseline. A more general analysis of the trends, with larger values of Z (i.e.,

greater confidence in the noisy tags), is summarized in Fig. 3.9. The graph shows

precision and recall for our re-annotation, varying Z for each of 5 error levels. We

observe that for the same value of Z, less noisy tags lead to better re-annotation.

Moreover, after reaching a peak near Z = 2.5, the recall starts to drop, while

precision continues to improve. This graph can be useful in selecting parameters

for a desired precision/recall level after re-annotation, given an estimated level of

noise in the tags.

3.3.4 Searching for Pictures

We examine how the actual image search performance improves with our approach,

compared to traditional ways. We assume that either the database is partially

tagged, or the search is performed on a picture collection visually coherent with

some standard ‘knowledge base’. In all our cases, the statistical models are learned

from the Corel dataset. For scenario 4, we assume that everything is tagged, but

some tags are incorrect/inconsistent. Once again, we train a knowledge base of

600 picture categories, and then use it to do categorization and automatic tagging

on the test set. This set consists of 10, 000 randomly sampled pictures from among

the remaining Corel pictures (those not used for training).

We now consider the four image search scenarios discussed in Sec. 3.0.1. For

each scenario, we compare results of our annotation-driven image search strategy

with alternative strategies. For those alternative strategies involving CBIR, we use

the IRM distance used in the SIMPLIcity system [278] to get around the missing

tag problem in the databases and queries. We chose the alternative strategies and
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their parameters by considering a wide range of possible methods. We perform

assessment of the methods based on the standard information retrieval concepts of

precision (percentage of retrieved pictures that are relevant) and recall (percentage

of relevant pictures that are retrieved). We consider two pictures/queries to be

relevant whenever there is overlap between their actual set of tags.
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Figure 3.10. Precision (left) and recall (right) under scenario 1, compared to baseline.
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Figure 3.11. Precision (left) and recall (right) under scenario 2, compared to baseline.

Scenario 1: Here, the database does not have any tags. Queries may either

be in the form of one or more keywords, or tagged pictures. Keyword queries on

an untagged picture database is a key problem in real-world image search. We

look at 40 randomly chosen pairs of query words (each word is chosen from the

417 unique words in our training set). In our strategy, we perform search by first

automatically tagging the database, and then retrieving images based on bag of the
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Figure 3.12. Precision (left) and recall (right) under scenario 3, compared to baseline.

words distances between query tags and our predicted tags. The alternative CBIR-

based strategy used for comparison is as follows: without any image as query, CBIR

cannot be performed directly on query keywords. Instead, suppose the system is

provided access to a knowledge base of tagged Corel pictures. A random set of

three pictures for each query word is chosen from the knowledge base, and the

IRM distances between these images and the database are computed. We then use

the average IRM distance over the six pictures for ranking the database pictures.

We report these two results, along with the random results, in Fig. 3.10. Clearly,

our method performs significantly better than the alternative approach.

Scenario 2: Here, the query is an untagged picture, and the database is

tagged. What we do here is first tag the query picture automatically, and then

rank the database pictures using bag-of-words distance. We randomly choose 100

query pictures from Corel and test it out on the database of 10, 000 pictures. The

alternative CBIR-based strategy we use is as follows: the IRM distance is used

to retrieve five (empirically observed to be the best count) pictures most visually

similar to the query, and the union of all their tags is filtered using the expression

for R(t|I) to get automatic tags for the query (the same way as our annotation

is filtered, as described in Sec. 3.2). Now, search proceeds in a manner identical

to ours. We present these results, along with the random scheme, in Fig. 3.11.

As we see, our strategy has a significant performance advantage over the alternate

strategy. The CBIR-based strategy performs almost as poorly as the random

scheme, which is probably due to the direct use of CBIR for tagging.
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Scenario 3: In this case, neither the query picture nor the database is tagged.

We test 100 random picture queries are tested on the 10, 000 image database.

Our strategy is simply to tag both the query picture as well as the database

automatically, and then perform bag-of-words based retrieval. Without any tags

present, the alternative CBIR-based strategy used here is essentially a standard

use of the IRM distance to rank pictures based on visual similarity to the query.

We present these results, along with the random case, in Fig. 3.12. Once again,

we see the advantage of our common image search framework over straightforward

visual similarity based retrieval. What we witness here is how, in an indirect way,

the learned knowledge base helps to improve search performance, over a strategy

that does not involve statistical learning.
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Figure 3.13. Retrieval precision for scenario 4 at three noise levels.

Scenario 4: Here, the query picture and the database are both fully tagged,

but many tags are incorrect, a situation that often arises under user-driven tag-

ging, for reasons such as subjectivity. Here, our re-annotation approach (refer to

Sec. 3.3.3) is used to refine these noisy tags prior to performing retrieval. Introduc-

ing noise levels of e = 0.7, 0.8, and 0.9, and using parameter Z = 1.5, we test 100
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random picture queries on the 10, 000 images. For this, queries and the database

are first re-annotated. Alternate strategy here includes the baseline case, as de-

scribed in Sec. 3.3.3. The precision results over the top 100 retrieved pictures, for

the three noise levels are shown in Fig. 3.13. Interestingly, even at e = 0.7, where

our re-annotation approach does not surpass the baseline in annotation precision,

it does so in retrieval precision, making it a useful approach at this noise level.

Moreover, the difference with the baseline is maximum at noise level 0.8. Note

that for e ≤ 0.5, our approach did not yield better performance than the baseline,

since the tags were sufficiently ‘clean’. These results suggest that at relatively high

noise levels, our re-annotation approach can lead to significantly improved image

retrieval performance, compared to the baseline.

3.4 Summary

We have proposed a novel annotation-driven image search approach. By experi-

menting with standard picture sets as well as publicly contributed collections, we

have shown its potential in various aspects. The framework is standard for dif-

ferent scenarios and different types of queries, which should make implementation

fairly straightforward. We see that in each such scenario, our approach turns out

to give more promising results than traditional methods. The categorization per-

formance in itself is an improvement upon previous attempts. Moreover, we are

able to categorize and tag the pictures in very short time. All of these factors make

our approach attractive for real-world implementation.



Chapter 4
Bridging Dynamic Semantic Gap:

Adapting Automatic Image Tagging

via Meta-learning

Automatic image annotation is the task of producing tags for images based on their

visual content. In the context of machine learning, automatic annotation falls into

the class of learning tasks that involve making multiple binary decisions on each

data point. If we could generate comprehensive, accurate, semantically meaningful

tags for images, it would bring image organization up to roughly the level of text

documents. Of late, many image annotation ideas have been proposed [9, 27,

34, 82, 92, 129, 166, 167, 171, 193, 275, 282, 291, 295]. Virtually all propositions

are based on supervised learning, and take roughly the following form, (a) use a

limited set of manually tagged images to train generative or discriminative models

for associating visual features to tags, and (b) given a new image, use the model

inferences on its visual content to assign a variable-size set of tags from its limited

vocabulary. Performance is typically reported based on a static training/testing

split of one or more manually tagged image datasets. However, this may not

accurately represent real-world settings for automatic tagging.

We argue for a fundamentally different notion of automatic image annotation

in real-world settings involving users, whereby the goal is mainly to mimic the

users in the tagging process as closely as possible. To elaborate, let us take the

case of Yahoo! [88], a dynamic online photo-sharing Website where collaborative
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image tagging, also referred to as folksonomic tagging, plays a key role in mak-

ing the image collections meaningful, organizable by semantics and searchable by

text [273]. It is also an apt service platform for automatic image tagging. If the

goal of the tagging system is to reduce human effort, or to assist humans tag pho-

tos more accurately and/or with less effort (e.g., by automatically suggesting tags

to choose from), then a natural performance metric will be how closely the auto-

matically generated tags mimic user-generated ones for the same images. If the

goal is indeed to maximize performance defined in this manner, then it is easy to

see how the standard procedure of splitting a dataset into training and test, and

computing performance on the test set, can be misleading. What is problematic is

the assumption that training and test cases are sampled from the same underlying

distribution in the joint image-tag space. There are at least three factors that can

affect the test time image-tag distribution and hence the generalization of model

training to, say, a Flickr tagging scenario:

• Context: The Flickr users may tag the same photos differently than the

users who tagged the training dataset. Some visual elements may be more

commonly tagged in a different language, a local dialect, or slang, rather than

their correct English language descriptors. The types of images uploaded by

the users may also be different.

• Time evolution: The kinds of photos uploaded and the nature of user tags

may evolve with time for various reasons, including news, current affairs,

and changing political situations. Trends may spread through the network

of users, and over time, get more pervasive. This trend of evolution over time

has been observed in photo-sharing systems and reported in [57, 73].

• User/community preferences: The kinds of photos uploaded, the tags

given to them, or the frequency distribution over tags, may vary to a great

extent across individuals and small communities. This is particularly evident

in Flickr, where the user has the option of choosing from her own set of

previously used tags [93], thereby promoting locality in the tag space.

In the remainder of this chapter, we will refer to all three of these commonly as

a changed image tagging environment (ITE). In this sense, an annotation system
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which has the ability to adapt to changes in ITE can potentially be effective in all

three scenarios.

4.0.1 A Challenging Setting for Learning

Given that generic images vary widely in their composition, learning a mapping

function from the image space to the tag space is extremely challenging, as has been

found in previous studies [58, 242]. Most proposed image annotation approaches

therefore resort to complex statistical learning models in efforts to learn semantics

from visual content, which involve computationally expensive training. We are

unlikely to be able to reduce the complexity of these models significantly. On the

other hand, we require efficient annotation adaptability to various ITE changes. If

the ITE change involves expanding the vocabulary to include concepts that were

trained under different tag names, we also wish to take advantage of the previously

learned knowledge.

One obvious way to adapt an automatic annotation system to a changed ITE

would be to re-train it using data sampled from that ITE. Unfortunately, with

most systems this can take hours or even days [9, 163], which means that for

dynamically changing ITE, a significant amount of latency will be introduced,

and training resources will stay blocked on a continual basis. When changes are

frequent or the problem is scaled up, it will be impossible to keep up with the

changes this way. Furthermore, most annotation systems are not well suited for

incremental learning. We thus require a learning system with a unique need; given

a core learning algorithm that is expensive to train, we require an augmentation

which can quickly adapt to various kinds of ITE changes in a scalable manner,

while taking advantage of previously learned knowledge. Additionally, ITE changes

over short periods are typically localized, which presents an opportunity to train

incrementally rather than having to re-train over entire datasets at each change

point.

4.0.2 Overview of Our Approach

To meet the aforementioned needs, we propose a meta-learning layer above the core

learning system which can adapt to evolving ITE incrementally, in a light-weight
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manner, without requiring a re-training of the core system. Suppose there is a core

annotation black-box that, by some means (e.g., a one-time learning process), can

analyze the visual content of images and generates sets of tags. Expectedly, these

tags come from a fixed size vocabulary, and the association of visual features with

these tags is intrinsic to the particular set of training images used. Our goal is to

expand the capabilities of the black-box to allow adaptability to various kinds of

ITE changes while maximizing the use of previously learned knowledge.

In order to make a case for meta-learning, let us draw analogy with a robot

learning to solve math problems. Suppose robot X has initially learned to solve a

fundamentally important pool of math problems. In this process, its fundamentals

have been cleared and it has developed critical but limited skills. This X is the

black-box system, and initial problem pool is an ITE. Now, X is required to solve

harder, more diverse problems. Here, the problems are sampled from a larger

source, and the same tactics may not work. We thus have a changed ITE, and X

needs to get adapted to the new conditions and challenges. It may be too expensive

to re-train the robot on an all-inclusive set of problems all over again, and even

that training may not be sufficient to solve a continuously evolving problem pool.

Instead, if we have another robot Y which is aware of the early-stage training of X,

observes its response to new problems, analyzes its mistakes and is able to rectify

it eventually by taking the output of X and produces a new one, the combined

X +Y system can likely be more powerful. The assumption here is that the output

of X is still fundamentally in the right direction, and only needs refinement and

perhaps a better representation of the solution. The knowledge acquired by X can

be used to solve problems in a new setting, similar in principle to inductive transfer

or transfer learning. Thus, Y here is equivalent to the meta-learning framework,

in the sense that it sits and observes X, learns from mistakes, and eventually

improves upon the output of X.

In terms of image tagging, the scenario is as follows. We have a fundamentally

grounded black-box (which we assume to be any annotation system proposed and

found to perform moderately), a meta-learning framework which we call PLMFIT,

which, for some fraction of the images in a changed ITE, can observe the tags

generated by the black-box, as well as the ground-truth tags in those cases, and

quickly learn to adapt to it. The change in ITE can be any of (a) change in context,
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(b) evolution over time, or (b) change in the people who the images belong to or are

tagged by. Because the observations are received differently for the three cases,

the PLMFIT training process varies as well. For a change in context, we can

train the PLMFIT one-time using a batch of image samples collected from the

new ITE. For changes over time, PLMFIT can learn incrementally as new images

get uploaded, assessed by the black-box, and tagged by users. For a particular

person’s uploaded images, PLMFIT can be trained on her previously tagged pool

of images, if such a pool exists. We therefore first need a formulation for the meta-

learning component PLMFIT, and then the algorithms for training it to achieve

adaptability under varied settings.

4.0.3 Related Work

There is a wealth of machine learning literature on meta-learning, incremental

learning, and inductive transfer, concepts that our work is directly related to,

although we are unaware of the use of these techniques for image tagging or re-

lated problem areas. Here, we briefly discuss literature most pertinent to this

work. The term meta-learning has historically been used to describe the learning

of meta-knowledge about learned knowledge. Research in meta-learning covers a

wide spectrum of approaches and applications, as presented in a review [272]. One

of the most popular meta-learning approaches, boosting is widely used in super-

vised classification [90]. Boosting involves iteratively adjusting weights assigned to

data points during training, to adaptively reduce misclassification. In stacked gen-

eralization, weighted combinations of responses from multiple learners are taken

to improve overall performance [290]. The goal here is to learn optimal weights

using validation data, in the hope of generalization to unseen data. Another re-

search area under the meta-learning umbrella that bears relevance to our work is

inductive transfer. Research in inductive transfer is grounded on the belief that

knowledge assimilated about certain tasks can potentially facilitate the learning

of certain other tasks [32]. A recent workshop [239] at the NIPS conference was

devoted to discussing advances and applications of inductive transfer. Incremental

learning deals with adapting predictions to contextual changes as new data enters

the system. Adapting to radical contextual changes via incremental learning was
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proposed by [287]. Incrementally learning support vectors as and when training

data is encountered has been explored as a scalable supervised learning procedure

by [33]. The idea of partial instance memory, whereby only a relevant subset of

the incoming stream of training samples are maintained (thereby saving mem-

ory) and used for incremental learning, was proposed and shown to be empirically

effective [182]. Authors Kolter and Maloof proposed a weighted ensemble of in-

cremental learners for concept drift [230], a formalization of the idea that concepts

to learn change over time [146]. In the case of image tagging, it is the mapping

between tags and visual semantics that drifts over time.

Research in automatic image annotation can be roughly categorized into two

different ‘schools of thought’: (1) Words and visual features are jointly modeled

to yield compound predictors describing an image or its constituent regions. The

words and image representations used could be disparate [82, 129] or single vectored

representations of text and visual features [193, 171]. (2) Automatic annotation

is treated as a two-step process consisting of supervised image categorization, fol-

lowed by word selection based on the categorization results [34, 166, 27]. While

the former approaches can potentially label individual image regions, ideal region

annotation would require precise image segmentation, an open problem by itself

in computer vision. While the latter techniques cannot label regions, they are

typically more scalable to large image collections. Though less relevant to our

work, approaches such as [282] employ yet another philosophy for image tagging,

i.e., to avoid learning and hence stay ‘model-free’. Specifically within the machine

learning community, significant recent work in the domain of image categorization

and annotation include [9], who proposed the use of latent dirichlet allocation [16]

for the purpose of associating images and tags, [42], who proposed a multiple-

instance learning approach to image categorization, and [86], who explore the use

of stationary visual features for the detection of cats in gray-scale images.

Evolution of image tags over time, or their variation across people in online

communities, have only recently begun to get research focus. Researchers at Ya-

hoo! have studied the problem of visualizing the evolution of salient tags popular

among Flickr users [73]. Assuming such an evolution of tags over time in gen-

eral, [57] proposed a meta-learning approach to handling the evolution as part of

an automatic image tagging system, and found the approach to be effective on
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traces obtained from the Alipr system [3, 166]. Image tag recommendation strate-

gies for Flickr users was proposed by [238] and found to be effective. On similar

lines, personalized image tag recommendation was briefly explored by [93] using

tag co-occurrences and tag history, but neither approach involved the exploitation

of visual content of images for tagging purposes.

4.0.4 Contributions

Broadly speaking, the main contributions of this work are learning approaches and

algorithms that greatly improve automatic image tagging in real-world settings.

We take a complex learning task, that of finding a mapping function from low-level

image features to semantically meaningful tag sets, and create an appropriate meta-

learner around it which is well-suited to incremental training, and designed to meet

the needs of real-world usage. To the best of our knowledge, this is the first attempt

at meta-learning and incremental learning for image tagging. Moreover, because

image tagging is not simply formulated as a classification problem, existing meta-

learning and incremental learning methods cannot be applied directly. We thus

design a new statistical modeling approach, which also aims to achieve efficiency

in real-world deployment. Specific contributions are summarized below.

• We propose a principled, lightweight, meta-learning framework for image tag-

ging (PLMFIT), based on few simplifying assumptions, inspired by inductive

transfer, and backed by experiments, which can augment any existing anno-

tation system. This is the basic component that allows adaptation to ITE

changes. Experimentally, we find that PLMFIT can adapt to new contexts1

very effectively, showing dramatic performance improvement over the core

systems.

• We propose algorithms to use PLMFIT to adapt to concept drift [230], or

changes in ITE over time. Specifically, we propose fast algorithms for incre-

mental/decremental learning over time that take advantage of the simplicity

of the PLMFIT formulation. Two different memory models for incremen-

tal learning, persistent and transient, are explored. Experimentally, we find

1One can think of a contextual change as a global change of ITE, e.g., when a model is trained
using labeled Corel images, but applied to Flickr tagging.
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the algorithms to be highly effective in adapting over time on a real-world

dataset.

• We propose algorithms for personalized tagging, adapting to ITE changes

across people, assuming that some of their photos are already tagged. As

part of this, we propose an approach to allow expansion of the tag vocabulary

beyond the initial set, and incrementally updating model parameters for new

users. Experiments on actual user data show that personalization greatly

boosts tagging performance.

• Throughout, we use real-world data to justify each aspect of our approach,

as well as to show that assumptions of changing ITE over time and across

people hold true.

In all these cases, we assume the existence of a black-box annotation system that

exhibits better-than-random performance. This is the only assumption we make

about the black-box system, so most previously reported annotation algorithms

qualify. Experiments are conducted using two different annotation systems. The

datasets used for the experiments include the popular Corel image, two real-world

image traces and user-feedback obtained from the Alipr system [3], and a large set

of collaboratively tagged images obtained from Yahoo! [88], spanning hundreds of

users.

The rest of this chapter is arranged as follows. The technical details of PLMFIT

are presented in Sec. 4.1, including model estimation and smoothing steps. In

Sec. 4.2 we present the algorithms for using PLMFIT for adaptation over context,

time, and people. Experimental results are presented in Sec. 4.3. We discuss

results, limitations, and implications in Sec. 4.4. We conclude in Sec. 4.5.

4.1 PLMFIT: Principled Meta-learning Frame-

work for Image Tagging

In this section, we describe PLMFIT, our meta-learning framework that forms the

backbone of this work. Consider any black-box image annotation system, such

as [9, 27, 34, 82, 92, 129, 166, 167, 171, 193, 275, 295, 291], that takes an image
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Figure 4.1. High-level overview of our PLMFIT meta-learning framework.

as input and guesses one or more tags as its annotation. This work does not deal

with the algorithm behind the annotation black-box, but simply assumes that it

captures, from visual analysis, the semantics of the images in the form of tags, to

a better-than-random degree of reliability. Now let us assume that for a certain

set of images not used in training the black-box, ground-truth tags are available.

Clearly, for each such image, two sets of tags are available, (1) the ground-truth

tags, and (2) the tags predicted by the black-box. Let us also assume that we have

at our disposal a knowledge base such as WordNet [190], and the original images

from which we can independently extract visual features. A high-level overview of

a meta-learning framework that incorporates these components is show in Fig. 4.1.

As part of motivating the model, in what follows, we will graphically represent

empirical evidence to support its various components. For this purpose, we have

used 10, 000 images randomly chosen from the Alipr dataset which is described in

detail in Sec. 4.3. Each image is accompanied by human-provided tags as well as

the corresponding machine predictions [166, 3]. In the remainder of this section,

we begin with notation and an overview of the basic components of PLMFIT, then

describe its formulation, and finally present estimation steps.
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4.1.1 Notation and Basics

Let the black-box annotation system be known to have a tag vocabulary denoted

by Vbbox. For a given ITE, let us denote the ground-truth vocabulary by Vgtruth.

Let the full vocabulary of interest, V , be their union, i.e., V = (Vbbox ∪ Vgtruth) =

{w1, . . . , wK}, where size K = |V |. Given an image I, the black-box predicts a set

of tags to be its correct annotation. We introduce indicator variables Gw ∈ {0, 1},
w ∈ V , to denote if a guess w is predicted or not. Similarly, for ground-truth, let

Aw ∈ {0, 1} denote the whether w is a correct tag or not. The black-box can be

denoted by a function fbbox mapping an image I to a set of indicator variables,

i.e., fbbox(I) = {Gw1
, . . . , GwK

}, and ground-truth can be denoted analogously by

function fgtruth(I) = {Aw1
, . . . , AwK

}.
Regardless of the abstraction of visual content that the black-box uses for an-

notation, the pixel-level image representation is still available to the meta-learner.

If some visual features, which can be cheaply extracted and hence are suitable

for highly efficient incremental modeling, represent a different abstraction than

what the black-box uses, they can help form a a different ‘viewpoint’ and thus can

potentially complement semantics recognition. Suppose we have a D-dimensional

vector representation for such visual features extracted from an image, denoted by

fvis(I) = (h1, . . . , hD). Note that though non-vector visual representations (e.g.,

variable sized sets of features) can be more powerful representations, we use this

form here for computational advantages.

Furthermore, the English language semantic lexicon WordNet, which has been

previously found useful for image one that has been found useful for automatic

tagging [131, 55], is also available at our disposal. In particular, WordNet-based

semantic relatedness measures [153] have benefited annotation tasks. While this is

a potentially useful external knowledge base, it is rendered useless for non-English

words, proper nouns, contemporary slang, and incorrect usages that are commonly

found among user tags. However, in cases for which WordNet based relatedness

measures can be computed, we show how the transfer of learned knowledge can be

better directed.
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4.1.2 Model Formulation

We first describe the PLMFIT formulation, and then present the estimation steps.

For each image I, a decision is taken on each word independently, based on all

available information. To do so, we compute the following odds in favor of each

word wj ∈ V to be a ground-truth tag, conditioned on pertinent information:

`wj
(I) =

Pr
(
Awj

= 1 | fbbox(I), fvis(I)
)

Pr
(
Awj

= 0 | fbbox(I), fvis(I)
) (4.1)

In what follows, we will make simplifying assumptions to make this formulation

tractable. Note that here fbbox(I) (and similarly, the other terms) denotes a joint

realization of the corresponding random variables given the image I. Using Bayes’

Rule, we can re-write:

`wj
(I) =

Pr(Awj
= 1, fbbox(I), fvis(I))

Pr(Awj
= 0, fbbox(I), fvis(I))

(4.2)

If realization of variable Awj
is denoted by aj ∈ {0, 1} and that of variables Gwi

for

each word wi are denoted by gi ∈ {0, 1}, then using the chain rule of probability,

and without loss of generality, we can re-write the following:

Pr
(
Awj

=aj, fbbox(I), fvis(I)
)

(4.3)

= Pr
(
Gwj

=gj, Awj
=aj,

⋂

i6=j

(Gwi
=gi), fvis(I)

)

= Pr
(
Gwj

=gj

)
× Pr

(
Awj

=aj | Gwj
=gj

)

× Pr
(⋂

i6=j

(Gwi
=gi) | Awj

=aj, Gwj
=gj

)

× Pr
(
fvis(I) |

⋂

i6=j

(Gwi
=gi), Awj

=aj, Gwj
=gj

)

The odds in Eq. 4.1 can now be factored using Eq. 4.2 and 4.3:

`wj
(I) =

Pr(Awj
= 1 | Gwj

=gj)

Pr(Awj
= 0 | Gwj

=gj)
(4.4)
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×
Pr(

⋂
i6=j(Gwi

=gi) | Awj
= 1, Gwj

=gj)

Pr(
⋂

i6=j(Gwi
=gi) | Awj

= 0, Gwj
=gj)

×
Pr(fvis(I)|Awj

=1,
⋂

i6=j(Gwi
=gi), Gwj

=gj)

Pr(fvis(I)|Awj
=0,

⋂
i6=j(Gwi

=gi), Gwj
=gj)

Note that the priors ratio
Pr(Gwj

=gj)

Pr(Gwj
=gj)

is 1, and hence is eliminated. The ratio

Pr(Awj
=1|Gwj

=gj)

Pr(Awj
=0|Gwj

=gj)
is a sanity check on the black-box for each word. For gj = 1, it

can be paraphrased as “Given that word wj is guessed by the black-box for I,

what are the odds of it being correct?”. Naturally, a higher odds indicates that

the black-box has greater precision in guesses (i.e., when wj is guessed, it is usually

correct). A similar paraphrasing can be done for gj = 0, where higher odds implies

lower word-specific recall in the black-box guesses. A useful annotation system

should be able to achieve independently (word-specific) and collectively (overall)

good precision and recall. These probability ratios therefore give the meta-learner

indications about the black-box model’s strengths and weaknesses over its entire

vocabulary. In Fig. 4.2, we have plotted empirical estimates of these probability

terms for frequently occurring tags.
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Figure 4.2. Estimates of Pr(Awj
| Gwj

= 1) as obtained empirically with images
from the Alipr dataset (see Sec. 4.3) for 40 most frequently occurring tags (decreasing
frequency from left to right). As can be seen, the black-box is much more precise in
predicting tags such as ‘face’ or ‘plant’, compared to ‘texture’ or ‘ice’.

When gj = 1, the ratio
Pr( � i6=j(Gwi

=gi)|Awj
=1,Gwj

=gj)

Pr( � i6=j(Gwi
=gi)|Awj

=0,Gwj
=gj)

in Eq. 4.4 relates each cor-

rectly or wrongly guessed word wj to how every other word wi, i 6= j is guessed by

the black-box. This component has strong ties with the concept of co-occurrence
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popular in the language modeling community, the difference being that here it

models the word co-occurrence of the black-box’s outputs with respect to ground-

truth. Similarly, for gj = 0, it models how certain words do not co-occur in the

black-box’s guesses, given the ground-truth. Since the meta-learner makes deci-

sions about each word independently, it is intuitive to separate them out in this

ratio as well. That is, the question of whether word wi is guessed or not, given that

another word wj is correctly/wrongly guessed, is treated independently. Further-

more, efficiency and robustness become major issues in modeling joint probability

over a large number of random variables, given limited data. Considering these

factors, we assume the guessing of each word wi conditionally independent of each

other, given a correctly/wrongly guessed word wj, leading to the following approx-

imation:

Pr
(⋂

i6=j

(Gwi
=gi) | Awj

= aj, Gwj
=gj

)
≈
∏

i6=j

Pr(Gwi
=gi | Awj

= aj, Gwj
= gj)

The corresponding ratio term can then be written as

Pr(
⋂

i6=j(Gwi
=gi) | Awj

= 1, Gwj
=gj)

Pr(
⋂

i6=j(Gwi
=gi) | Awj

= 0, Gwj
=gj)

=
∏

i6=j

Pr(Gwi
=gi | Awj

= 1, Gwj
= gj)

Pr(Gwi
=gi | Awj

= 0, Gwj
= gj)

A conditional multi-word co-occurrence model has been effectively transformed

into that of pairwise co-occurrences, which is attractive in terms of modeling, es-

timation, and efficiency. While co-occurrence really happens when gi = gj =

1, the other combinations of values can also be useful, e.g., how the frequency

of certain word pairs not being both guessed differs according to the correct-

ness of these guesses. The contributions of the component ratio terms, namely
Pr(Gwi

=gi|Awj
=1,Gwj

=gj)

Pr(Gwi
=gi|Awj

=0,Gwj
=gj)

, can be understood by intuition. For the purpose of illus-

tration, a visual plot of the ratio
Pr(Gwi

=1|Awj
=1,Gwj

=1)

Pr(Gwi
=1|Awj

=0,Gwj
=1)

for a set of 30 most frequently

occurring tags in the Alipr dataset is presented in Fig. 4.3. The following examples

provide further insights:

• Some scene elements that are visually similar can often be mistakenly con-

fused among themselves by the black-box. For example, if ‘sky’ is guessed

for an image, and it is a correct guess more often when ‘water’ is also guessed
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than when it is not, then the ratio will have a high value for wi = ‘water’,

gi = 1, wj = ‘sky’, gj = 1. Here, the black-box prediction of one scene ele-

ment (water) reinforces belief in the existence of another (sky) in the scene

(See Fig. 4.3, location A).

• For some word wj, the black-box may not have learned anything due to lack

of good training images, inability to capture apt visual properties, or simply

its absence in Vbbox. For example, consider images where ground-truth is

wj =‘feline’ but black-box regularly guesses wi =‘cat’, only the latter being

in its vocabulary. Here, gj = 0 always, and the above ratio is high for gi = 1.

Here, the training on one tag induces guesses at another tag in the vocabulary

(see also Fig. 4.3, location B).
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Figure 4.3. Visualization of ratio
Pr(Gwi

=1|Awj
=1,Gwj

=1)

Pr(Gwi
=1|Awj

=0,Gwj
=1) as obtained empirically with

images from the Alipr dataset (see Sec. 4.3) for 30 most frequently occurring tags. Two
interesting cases, that highlight the importance of these terms to meta-learning effec-
tiveness, are marked. For example, the value at location (A) can be read as the ratio of
probabilities of ‘water’ being guessed for an image by the black-box given that ‘sky’ is
also guessed, correctly versus incorrectly.
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Finally,
Pr(fvis(I)|Awj

=1, � i6=j(Gwi
=gi),Gwj

=gj)

Pr(fvis(I)|Awj
=0, � i6=j(Gwi

=gi),Gwj
=gj)

in Eq. 4.4 can be simplified, since fvis(I),

being the meta-learner’s own visual representation, is independent of the black-

box’s visual abstraction. Therefore, we can re-write

Pr(fvis(I)|Awj
=1,−)

Pr(fvis(I)|Awj
=0,−)

≈ Pr(h1, . . . , hD|Awj
=1)

Pr(h1, . . . , hD|Awj
=0)

(4.5)

which is the ratio of conditional probabilities of the meta-learner’s visual features

extracted. We can think of this as a second, highly simplified image recognition

black-box, that can be computed efficiently, and as described in Sec. 4.2.2, is

suitable for incremental learning. In our experiments we have used LUV color

space based histograms as features, described in Sec. 4.1.3. The main idea is that

for some classes of images (see Fig. 4.8), even such simple features can add to

performance without adding to complexity.

Putting the pieces together, and taking logarithm to get around issues of ma-

chine precision, we can re-write Eq. 4.4 as a logit:

log `wj
(I) = log

Pr(Awj
=1 | Gwj

=gj)

1− Pr(Awj
=1 | Gwj

=gj)
+
∑

i6=j

log
Pr(Gwi

=gi | Awj
=1, Gwj

= gj)

Pr(Gwi
=gi | Awj

=0, Gwj
=gj)

+ log
Pr(h1, . . . , hD | Awj

=1)

Pr(h1, . . . , hD | Awj
=0)

(4.6)

This logit is essentially the backbone of PLMFIT inference, where a higher value

for a tag indicates greater support for its selection, for the image I. The final tags

for image I can then be based on any of the following selection methods:

• Top r: After ordering all words wj ∈ V in the increasing magnitude of

log `wj
(I) to obtain a rank ordering, we annotate I using the top r ranked

words.

• Threshold r%: We can annotate I by thresholding at the top r percentile

of the range of log `wi
(I) values for the given image over all the words.

• User Average: For the personalization case, since there may be trends

in the number of tags a particular user’s images have, we can compute the

average number r of tags in a given user’s training samples, and predict top

r tags for that user’s test cases.
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In our experiments reported in Sec. 4.3, we have used all three methods and shed

light on their performance differences, wherever applicable.

4.1.3 Model Estimation

For a given image I, predictions are first made by the black-box annotation system,

which are then used for evaluating Eq. 4.6, to finally propose a set of tags. To

facilitate evaluation of the equation, the probability terms need to be estimated

using training data that mimics an ITE in question. These terms are estimated and

indexed on, e.g., variables Awj
and Gwj

, for efficient evaluation. Let us consider

the estimation of each term separately, given a training set of size L for a par-

ticular ITE, consisting of images {I (1), . . . , I(L)}, the corresponding tags guessed

by the black-box, {fbbox(I
(1)), . . . , fbbox(I

(L))}, and the actual ground-truth tags,

{fgtruth(I
(1)), . . . , fgtruth(I

(L))}. To make the system lightweight, all estimation is

based on empirical frequencies, making computation times deterministic.

The term Pr(Awj
= 1 | Gwj

=gj) in Eq. 4.6 can be estimated from the size L

training data as follows:

P̂ r(Awj
=1 | Gwj

=gj) =

∑L
n=1 I

{
G

(n)
wj =gj & A

(n)
wj =1

}

∑L
n=1 I

{
G

(n)
wj =gj

} (4.7)

Here, I(·) is the indicator function. A natural issue of robustness arises when

the training set contains few or no samples for G
(n)
wj =1. Therefore, we perform

interpolation-based smoothing using

P̃ r(Awj
=1|Gwj

=gj) =

{
P̂ rprior(gj) m ≤ 1
1
m

P̂ rprior(gj) + m
m+1

P̂ r(Awj
=1|Gwj

=gj) m > 1

where m =
∑L

n=1 I{G
(n)
wj =gj}, the number of instances out of L where wj is guessed

(or not guessed, depending upon gj), and the prior P̂ rprior(gj) is estimated using

P̂ rprior(gj) =

∑K
i=1

∑L
n=1 I

{
G

(n)
wi =gj & A

(n)
wi =1

}

∑K
i=1

∑L
n=1 I

{
G

(n)
wi =gj

} (4.8)
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where gj ∈ {0, 1}. The prior term needs some explanation. For gj = 1, P̂ rprior(gj)

= #correct tag predictions overall
#tag predictions overall

. Thus, this prior stands for the probability that when-

ever an arbitrary tag is predicted, what the chances are of it being correct. Sim-

ilarly, for gj = 0, the prior stands for the probability that an arbitrary tag, when

not guessed, is actually correct. Given the total lack of training samples for a tag,

these priors are optimal estimates.

The probability term Pr(Gwi
=gi|Awj

=1, Gwj
=gj) in Eq. 4.6 can be estimated

using the empirical frequency ratio

P̂ r(Gwi
=gi|Awj

=1, Gwj
=gj) =

∑L
n=1 I

{
G

(n)
wi =gi & G

(n)
wj =gj & A

(n)
wj =1

}

∑L
n=1 I

{
G

(n)
wj =gj & A

(n)
wj =1

} (4.9)

In this case, robustness is more critical, because many word pairs may appear

together very infrequently among the black-box’s guesses. Here, we describe and

justify using the knowledge base WordNet [190] for robust smoothing of these

probability estimates. If the vocabulary consists only of semantically meaningful

tags such that WordNet-based word relatedness metrics are defined for all word

pairs within it, we can take advantage of it to perform a different form of inductive

transfer. Similarity based smoothing [53], a method commonly used in word pair

co-occurrence modeling, is appropriate here. Given a WordNet-based similarity

measure W (wi, wj) between wi and wj, we smooth the frequency based estimates

as follows.

P̃ r(Gwi
=gi|Awj

=1, Gwj
=gj) = θ · P̂ r(Gwi

=gi|Awj
=1, Gwj

=gj) (4.10)

+ (1− θ) ·
∑

k 6=j

W (wj, wk)

Z
P̂ r(Gwi

=gi|Awk
=1, Gwk

=gk)

where Z is the normalization factor. A choice of θ = 0.5 ensures that a particular

smoothed estimate is 50% dependent on the original estimate, and is found to work

well in our experiments. The remainder of the contribution comes from other tags

weighted by semantic relatedness. In effect, for poorly estimated terms, probability

estimates over semantically related terms ‘substitute’ for each other.

Let us elaborate further on the use of WordNet for smoothing, and its role in in-

ductive transfer. The function W (·, ·) stands for the Leacock and Chodorow (LCH)
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Figure 4.4. Network depicting WordNet-based relations among the 60 most frequently
occurring tags in the Alipr dataset (Sec. 4.3). An edge between a pair of words indi-
cates that the relatedness measure LCH [153] exceeds 1.7, roughly the mid-point of its
[0.37, 3.58] range of values.

word relatedness measure [153], which takes values between 0.37 and 3.58, higher

value meaning more semantically related. If we defined a pair of words wi and

wj to be semantically related if W (wi, wj) ≥ 1.7, then we would get a relatedness

network among the most frequently occurring tags in the Alipr dataset as shown in

Fig. 4.4. We observe that while some relationships make little sense, much of the

network is meaningful, and hence the LCH measure can be generally trusted. The

role played by this measure, based on Eq. 4.10, is to effectively transfer learned

knowledge (estimates) among semantically related tags. To further validate that

such knowledge transfer is practical, we reverse-engineered the problem by com-

puting the averaged out absolute differences between the pre-smoothed empirical

probability estimates among tags, and using a threshold to connect tag pairs with

low average differences. The resultant network is shown in Fig. 4.5. Though not

depicting the same underlying aspects, comparison with the network in Fig. 4.4

reveals interesting overlaps. In Fig. 4.6, we present a more direct attempt at as-

sessing whether the use of semantic relatedness leads to better ‘substitution’ of
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estimates. The term y(wi) plotted here is defined as

y(wi) =
1

|V |

|V |∑

j=1

1

|χj|
∑

w∈χj

|Pr(Gw=1|Awj
=a, Gwj

=1)− Pr(Gwi
=1|Awj

=a, Gwj
=1)|

(4.11)

where χj is a set of either ‘10 most related’ or ‘10 least related’ tags of wi, in the

WordNet sense (defined previously). We see that the use of strongly related tags

lead to better estimates than weakly related tags for almost all cases.

Figure 4.5. Empirical evidence, based on Alipr dataset (Sec. 4.3) that WordNet can
help with inductive transfer. Networking depicting proximity of pre-smoothed estimates
of Pr(Gwi

=1|Awj
=a,Gwj

=1) for pairs of tags among the top 60 most frequently oc-
curring ones. Specifically, there is an edge between a pair of tags wj1 and wj2 if
1
|V |
∑|V |

i=1 |Pr(Gwi
=1|Awj1

=a,Gwj1
=1)-Pr(Gwi

=1|Awj2
=a,Gwj2

=1)| for a = 0 and 1 are

both below 0.0025 (chosen to generate a less-cluttered but interesting graph). Compared
to Fig. 4.4, while we see many overlaps, there are quite a few differences as well, by virtue
of what the relations stand for.

When the vocabulary consist of many non-WordNet tags such as slang, proper

nouns, and foreign language terms, e.g., in the case of Flickr, the relatedness

metric cannot be used. In this case we set W (wi, wj) to 1 in Eq. 4.10 for all cases,

and normalize accordingly. When P̂ r(· | ·, ·) cannot be estimated due to lack of

samples, a prior probability estimate, computed as in the previous case, is used in

its place.
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Figure 4.6. Empirical differences between estimated Pr(Gwi
=1|Awj

=a,Gwj
=1) when

using semantically related words as against unrelated ones, are shown. For each of the
30 most frequent tags wi in Alipr dataset, we compute y(wi) (defined in Eq. 4.11 in the
text). What we see is that out of 30 tags, 25 and 27 tags for a = 0 and a = 1 respectively
have better estimates of the probability terms when substituted with semantically related
terms, as against unrelated ones. This indicates that smoothing with relatedness weights
is an attractive strategy.

Finally, the parameters of Pr(h1, . . . , hD | Awj
=a), a ∈ {0, 1}, which models

how simple visual features of image I (external to the black-box) differ when wj is

correct or incorrect, are estimated. The goal is to allow PLMFIT the opportunity

to be directly influenced by visual features which can be efficiently and incre-

mentally computed. Note that PLMFIT is already indirectly affected by visual

aspects of I via the black-box. A formulation that we successfully incorporated

into PLMFIT is now described. Each image is divided into 16 equally spaced, non-

overlapping, orthogonal tiles. For each tile, the RGB color values are transformed

into the LUV space, and the triplet of average L, U , and V values represent that

block. Thus, each image is represented by a 48-dimensional vector (h1, .., h48) of

global visual features (see Fig. 4.7). For estimation, each of the 48 components
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are fitted with univariate Gaussians, which involves calculating the sample mean

µ̂j,d,a and std. dev. σ̂j,d,a over training data with a = {0, 1} on tag wj. As before,

smoothing is performed by interpolation with priors µ̃d,a and σ̃d,a estimated over all

tags. The joint probability is computed by treating each component conditionally

independent given wj:

P̃ r(h1, . . . , h48 | Awj
=a) =

48∏

d=1

N (hd | µ̂j,d,a, σ̂j,d,a) (4.12)

Here, N (.) denotes the Gaussian density function. Again, to provide intuition be-

hind the role of these ratios in PLMFIT, we present µ̂j,d,a values for two exemplary

cases, estimated with real-world data, in Fig. 4.8. With this, we have covered the

estimation of each term in the PLMFIT model. We continue discussion on the

application of this static meta-learning model to dynamic scenarios.

V

{h    , ..., h    , ..., h    , ..., h    }481 33

1 2 .. ..

5 6 .. ..

..

..

..

L U
17

Figure 4.7. The 48-dimensional LUV features extracted in PLMFIT.

4.2 Tagging Improvements with PLMFIT

With the PLMFIT fundamentals and estimation steps described, we proceed to

discuss algorithms and setups for adaptation. As discussed before, three settings

where PLMFIT can be applied for adaptation purposes are (1) Context, (2) Time

evolution, and (3) Personalization. Contextual adaptation, which is achieved es-

sentially by batch-learning the PLMFIT using a sample set, is discussed first. The

latter two entail new algorithms that employ PLMFIT, and therefore these are

discussed in more details in following subsections.
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Figure 4.8. Estimated values of µ̂j,d,a, model parameters for Pr(h1, . . . , h48 | Awj
=a),

for the 48-dimensional global image features for two tags with observed differences, are
shown. As in the case of ‘space’ and ‘fruit’, if differences are significant for Awj

= 0
and 1, then this ratio contributes to the inference. An intuition behind the difference in
case of ‘fruit’, for example, is that close-up shots of fruits tend to be brighter and more
colorful than is typical.

4.2.1 Contextual Adaptation of Tagging

Contextual adaptation, with reference to automatic image tagging, is the applica-

tion of image annotation models, trained with data generated in one ITE (image

tagging environment), to a different ITE. This includes cases where (a) the test

conditions vary only in sample selection (e.g., trained using one set of Corel im-

ages, and tested on a different set of Corel images), or (b) the test data is from

an entirely different source as compared to the training data (e.g, training using

Corel, testing on Flickr images). In this sense, the context is not changing on a

continual basis, but is rather a one-time shift.

The underlying black-box model is trained using images from say ITE1. The

test scenario involves samples from ITE2 which could represent either of the above

mentioned cases. We assume the availability of N tagged training samples from

ITE2, which we use to estimate the PLMFIT meta-learner described in Sec. 4.1.3.

For example, if the underlying black-box is Alipr [166] trained using Corel im-

ages (ITE1), and photo-sharing site Flickr (ITE2) is our target application, we

can use some user-tagged Flickr images to train PLMFIT, and then used the
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Alipr/PLMFIT combination to tag future images on Flickr. If the combination

performed better than Alipr alone, it would be convincing that the meta-learning

layer indeed adds to tagging performance. Empirical assessment of contextual

adaptation strength of PLMFIT is presented in Sec. 4.3.1.

4.2.2 Adapting Tagging over Time

1 2001 4001 6001 8001 10001 12001 14001 16001 18001
0

0.2

0.4

0.6

0.8

1

Temporally ordered starting ID in the Alipr trace used for computing histograms

Fr
eq

ue
nc

y 
H

is
to

gr
am

 

 

people
man−made
landscape
indoor
building
history
animal
grass
sky
wildlife

Figure 4.9. Time-ordered histograms of occurrence of the top 10 most frequent tags
in the Alipr dataset (consisting of 20,000 images), computed over 2,000 image overlap-
ping windows (except last one) with window starting points at 1,000 image intervals.
Notice how tag popularity fluctuate over time, e.g., after a point, ‘wildlife’ diminishes in
frequency while ‘animal’ gains prominence.

When an annotation black-box is deployed in an online environment such as

Alipr or Flickr, where there is continuous image uploading and tagging over time,

the user base, the kinds of photos uploaded by them, and the types of tags given to

them may evolve with time (see evidence of this in Fig. 4.9). External impetus such

as news and current affairs may further protract this [57]. To deal with this issue,

we can employ PLMFIT to meta-learn and adapt itself as things change. However,

continuously re-training the full model is computationally intensive. In this section

we present algorithms that help adapt over time efficiently. A schematic view of

this scenario and our approach to handling it is shown in Fig. 4.10.

In Flickr, images are publicly uploaded, and independently or collaboratively

tagged, not necessarily at the time of uploading. In Alipr, feedback is solicited
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Figure 4.10. Tagging adaptation over time using a black-box augmented with PLMFIT.

immediately upon uploading. In both these cases, ground-truth arrives into the

system sequentially, giving an opportunity to learn from it to tag future uploads

better. As described in Sec. 4.1.3, PLMFIT estimation is purposely designed to

involve summation of instances only, followed by O(1) parameter computation.

Inference steps are also lightweight in nature. We can take advantage of this to

perform incremental/decremental learning, thereby eliminating the need for full-

fledged re-estimation over time.

To start with, the PLMFIT needs to be estimated with seed images taken from

the application ITE. Hence, over a certain initial period, the meta-learner stays

inactive, collecting an Lseed number of user-tagged images. At this point, the meta-

learner is trained, and starts tagging incoming images. After an Linter number of

new images has been received, the meta-learner is re-trained (see Fig. 4.11). The

primary challenge here is to make use of the models already learned, so as not to

redundantly train on the same data. Re-training can be of two types depending

on the underlying ‘memory model’:

• Persistent Memory: Here, PLMFIT accumulates new data into the cur-

rent model, so that at steps of Linter, it learns from all data since the very

beginning, inclusive of the seed data. Technically, this only involves incre-

mental learning.
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• Transient Memory: Here, while the model learns from new data, it also

‘forgets’ an equivalent amount of the earliest memory it has. Technically,

this involves incremental and decremental learning, whereby at every Linter

jump, PLMFIT is updated by (a) assimilating new data, and (b) ‘forgetting’

old data.

Initial images
& ground−truth, used
to train meta−learner

the first time
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current re−training

L inter

L inter

Lpr

Transient
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in time)

Lcu

L

Figure 4.11. Overview of persistent/transient memory models for tagging adaption
over time.

4.2.2.1 Incremental/Decremental Meta-Learning

The PLMFIT formulation makes incremental and decremental learning efficient.

Let us denote ranges of image sequence indices, ordered by time, using the su-

perscript [start : end], and let the index of the current image be Lcu. We first

discuss incremental learning, required for the case of persistent memory. Here,

probabilities are re-estimated over all available data upto the current time, i.e.,

over [1 : Lcu]. This is done by maintaining summation terms, denoted S(·), com-

puted in the most recent re-training at lpr (say), over a range [1 : Lpr], where Lpr

< Lcu. For the first term in Eq. 4.6, suppressing the irrelevant variables,

P̂ r(Awj
| Gwj

)
[1:Lcu]

=

∑Lcu

n=1 I
{
G

(n)
wj & A

(n)
wj

}
∑Lcu

n=1 I
{
G

(n)
wj

}

=
S(Gwj

& Awj
)[1:Lpr ] +

∑Lcu

n=Lpr+1 I
{
G

(n)
wj & A

(n)
wj

}

S(Gwj
)[1:Lpr] +

∑Lcu

n=Lpr+1 I
{
G

(n)
wj

} (4.13)
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Therefore, updating and maintaining summation values S(Gwj
) and S(Gwj

& Awj
)

suffices to re-train PLMFIT without using time/space on past data. The priors are

also computed using these summation values in a similar manner, for smoothing.

Since PLMFIT is re-trained at fixed intervals of Linter, i.e., Linter = Lcu−Lpr, only

a fixed amount of time/space is required every time for getting the probability

estimates, regardless of the value of Lcu. The second term in Eq. 4.6 can also

be estimated in a similar manner, by maintaining the summations, taking their

quotient, and smoothing with re-estimated priors. For the last term related to

visual features, the estimated mean µ̂j,d,a and std.dev. σ̂j,d,a can also be updated

with values of (h1, . . . , h48) for the new images by only storing summation values.

Since σ2(X) = E(X2)− (E(X))2,

µ̂
[1:Lcu]
j,d,a =

1

Lcu

(
S(hd)

[1:Lpr] +
Lcu∑

n=Lpr+1

h
(n)
d

)

σ̂
[1:Lcu]
j,d,a =

√√√√ 1

Lcu

(
S(h2

d)
[1:Lpr]+

Lcu∑

n=Lpr+1

(
h

(n)
d

)2)−
(
µ̂

[1:Lcu]
j,d,a

)2

Here, S(h2
d)

[1:Lpr] is the sum-of-squares of the past values of feature hd, to be

maintained, and E(.) denotes expectation. This justifies the simple visual repre-

sentation we have, since it becomes convenient for incremental learning. Overall,

this process continues to re-train PLMFIT, using the past summation values, and

updating them at the end, as depicted in Fig. 4.11.

In the transient memory model, estimates need to be made over a fixed number

of the most recent data instances. This can also be performed efficiently by com-

bining incremental with decremental learning. We can again maintain summation

values, but here we need to subtract the portion that is to be removed from con-

sideration. Suppose the memory span is decided to be Lms, meaning that at the

current time Lcu, the model estimate must only be based on data over the range

[Lcu − Lms : Lcu]. Let Lold = Lcu − Lms. Here, we show the re-estimation of µ̂j,d,a.
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Along with summation S(hd)
[1:Lpr], we also need S(hd)

[1:Lold−1]. Therefore,

µ̂
[Lold:Lcu]
j,d,a =

1

Lms+1

Lcu∑

n=Lold

h
(n)
d =

1

Lms+1

(
S(hd)

[1:Lpr] +

Lcu∑

n=Lpr+1

h
(n)
d − S(hd)

[1:Lold−1]
)

Since Lms and Linter are decided a priori, we can pre-compute the values of Lold for

which S(hd)
[1:Lold−1] will be required, and store them along the way. Other terms

in Eq. 4.6 can be estimated similarly.

Algorithm 1 Adapting Tagging over Time with PLMFIT
Require: Image stream, Black-box, tagged image pool (seed)
Ensure: Annotation guesses for each new image
1: /* Learn an initial seed model using available tagged data */
2: Train PLMFIT using seed data.
3: repeat {I ← incoming image}
4: Annotate I using PLMFIT
5: if User tags image I then

6: Lcu ← Lcu + 1, ILcu
← I

7: Dat(Lcu) ← Black-box guesses, user tags, etc.
8: end if

9: if ((Lcu − Lseed) modulo Linter) = 0 then

10: if Strategy = ‘Persistent Memory’ then

11: Re-train PLMFIT on Dat(1 : Lcu)
12: /* Use incremental learning for efficiency */
13: else

14: Re-train PLMFIT on Dat(Lcu − Lms : Lcu)
15: /* Use incremental/decremental learning for efficiency */
16: end if

17: end if

18: until End of time

In summary, a high-level version of tagging adaptation over time is presented

in Algo. 1 starts with an initial training of PLMFIT using seed data of size Lseed.

This could be accumulated online using the annotation system itself, or from an

external source of images with ground-truth (e.g., Corel images). The process then

takes one image at a time, annotates it, and when ground-truth is made available,

it is stored for future meta-learning. After gaps of linter, the model is re-trained

based on one of the two chosen strategies.

4.2.3 Personalized Tagging across People

In environments such as Flickr, where image tagging is typically performed by the

owner and her connected relations, there is an opportunity for automatic annota-

tion systems to personalize the tagging process in order to improve performance.
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Figure 4.12. Distribution over the 50 most frequent tags in the Flickr dataset (see
Sec. 4.3) for 18 randomly sampled users. Note how the distribution greatly varies, which
reinforces our belief that personalization can give automatic image tagging a significant
performance boost.

Different users upload different kinds of images and may also follow different tag-

ging patterns. In fact, from Fig. 4.12, we can see that the distribution over the

set of 50 most frequently occurring tags in the Flickr dataset varies greatly across
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users. To build personalization models, the following must be assumed; (a) there

are tagged images available for the user in question, and (b) there is locality in the

tag space of images belonging to the user, i.e., the tag distribution of an user’s im-

ages does not represent a microcosm of the entire collection of images, but rather

something characteristic of that particular user.
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Figure 4.13. Motivating the case for personalization with Flickr data: Graph (1)-(3)
depict the fraction of all tags covered by the most frequent 5, 10, and 20 tags respectively
for each of 100 randomly chosen users (sorted by % covered). The dashed line shows the
same for all users pooled together, providing evidence that the tags space is localized
for most users. Graph (4) shows the distribution of overlap between tags of 100, 000
image pairs each sampled randomly from (a) within same users, and (b) across users,
normalized by the minimum number tags for each pair. While more than 90% of the
across-user cases have no tag overlaps, almost 50% of the same-user pairs have some
overlap, while 8%+ have maximally identical tags.

In Fig. 4.13, data obtained from Flickr shows strong evidence of the validity

of these assumptions, focusing on (a) tag space locality, and (b) within-user tag

similarity compared to across-user tag dissimilarity. One personalization approach

could be that a separate black-box model is trained for every single individual.

Given millions of users, who at a given time have a varying number of tagged

images associated with them, this approach runs the risk of (a) being prohibitively

expensive, (b) requiring re-training as more images are tagged, and (c) lacking suf-

ficient data points in many cases. Instead, we can employ PLMFIT to personalize
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Algorithm 2 Personalized Tagging across People with PLMFIT
Require: Black-box, Tagged image pool from population (seed)
Require: Previously tagged set of images for user U , population vocabulary V pop

Ensure: Personalized tagging model PLMFITU for U , with vocabulary V U

1: /* Learn a seed model over the entire population */
2: Train PLMFITpop using seed data (once for all users)
3: PLMFITU ← PLMFITpop, V U ← V pop

4: QU ← Tagged image pool of user U
5: W ← {user tags for QU} ∪ {PLMFITU tag predictions for QU}
6: repeat {wk ∈W , taken in arbitrary order}
7: if (wk ∈ V U ) then

8: /* Tag is in the vocabulary, so update model */
9: Perform incremental update of PLMFITU using relevant subset of QU

10: else

11: /* Tag is not in current vocabulary, so add to model */
12: V U ← V U ∪ {w}
13: Perform vocabulary expansion of PLMFITU using relevant subset of QU

14: end if

15: until all tags in W are covered

the tags in a lightweight manner, effectively using a prior model over all individu-

als, and incrementally incorporating new data points per individual by incurring

low overhead. Algo. 2 presents a sketch of the personalization algorithm.

4.2.3.1 Incremental Update

In Algo. 2, when a tag wk associated with user pool QU is already part of the

vocabulary V pop, the personalization step is to update the parameters in model

PLMFITU that are associated with wk. This can be done incrementally in a

fashion very similar to Eq. 4.13 as described in Sec. 4.2.2. As before, summation

values need to be maintained. The only difference is that instead of pooling over

time, we pool tagged images specifically for user U . Suppose QU = {IU1
, . . . , IUn

},
then Pr(Awk

| Gwk
)U , the first term of PLMFITU is estimated as

P̂ r(Awk
| Gwk

)
U

=
S(Gwk

& Awk
)pop +

∑n
q=1 I

{
G

(q)
wk & A

(q)
wk

}

S(Gwk
)pop +

∑n
q=1 I

{
G

(q)
wk

} (4.14)

where superscripts pop and U denote population and user U specific terms respec-

tively, and S(·) denotes summation terms, as before. The other terms in Eq. 4.6

can also be updated in a similar manner, as mentioned in Sec. 4.2.2. Intuitively,

a larger size of the pool QU should have greater influence on PLMFIT, and hence

the personalization should be more effective for users with more tagged images

available.
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4.2.3.2 Vocabulary Expansion

When a tag wk associated with QU is not part of V pop, it needs to be added

to vocabulary V U for user U , and corresponding probability terms need to be

estimated from scratch. The first term Pr(Awk
| Gwk

)U of Eq. 4.6 is essentially

Pr(Awk
)U , the prior on wk, since Gwk

= 0, and the last term Pr(h1, . . . , h48 | Awj
)U

can be estimated using Eq. 4.12, since the settings are identical. Estimation of

probabilities Pr(Gwi
= gi | Awj

= aj, Gwj
= gj)

U , which make up the second term,

needs more attention. We need to generate new estimates for terms of the form

Pr(Gwk
= gk | Awj

= aj, Gwj
= gj)

U and Pr(Gwi
= gi | Awk

= ak, Gwk
= gk)

U , for

all wi, wj ∈ V pop. For a new tag wk, Gwk
= 0 in all cases, so we can re-write the

corresponding ratio terms as follows:

Pr(Gwk
=gk | Awj

=1, Gwj
=gj)

Pr(Gwk
=gk | Awj

=0, Gwj
=gj)

= 1, and

Pr(Gwi
=gi | Awk

=1, Gwk
=gk)

Pr(Gwi
=gi | Awk

=0, Gwk
=gk)

=
Pr(Gwi

=gi | Awk
=1)

Pr(Gwi
=gi | Awk

=0)
(4.15)

In plain words, this means that (a) new tags play no role in the prediction of the

tags in the black-box vocabulary, and (b) since the new tags are never guessed

by the black box, their prediction is based entirely upon guesses on the black-box

vocabulary. This also shows that in Algo. 2, the order in which the new words are

added to the vocabulary does not matter. To summarize, for a new word wk, the

logit in Eq. 4.6 can be simplified as follows:

log `wk
(I) = log

Pr(Awk
=1)

1− Pr(Awk
=1)

+
∑

i6=k

log

(
Pr(Gwi

=gi | Awk
=1)

Pr(Gwi
=gi | Awk

=0)

)

+ log

(
Pr(h1, .., hD | Awk

=1)

Pr(h1, .., hD | Awk
=0)

)
(4.16)

Vocabulary expansion in this manner is general enough that it can apply to tag-

ging adaptation over time without any personalization. A combination of efficient

adaptation over time and user-specific personalization is a natural extension, but

we have not experimented with such combinations in this work.
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4.3 Experimental Results

We perform image tagging experiments to validate the effectiveness of PLMFIT

in (1) contextual adaptation, (2) adaptation over time, and (3) personalization.

Standard datasets as well as real-world data are used. First, we use the Corel

Stock photos [163] to compare our meta-learning approach with the state-of-the-

art. This collection of images is tagged with a 417 word vocabulary. Second, we

obtain two real-world, temporally ordered traces from the Alipr Website [3], each

10, 000 in length, taken over different periods of time in the year 2006. Each trace

consists of publicly uploaded images, the automatic annotations provided by Alipr,

and the tags provided by users for them. The Alipr system provides the user with

15 guessed tags, and the user can opt to select the correct guesses and/or add

new ones. The vocabulary for this dataset consists of 329 unique tags. Third,

using the Flickr API [88], we obtain upto 1000 public images belonging to each

of 300 random users, totaling to 162, 650 real-word images. After pruning tags

that appeared less than 10 times in the entire dataset, we were left with a 2971

word vocabulary, with a mean of 7 (± 5) user tags per image, which we treat as

ground-truth. As expected, we observed a great number of user-specific tags (e.g.,

names of people) in the dataset, although many of the less significant ones were

eliminated in the aforementioned pruning process.

Two different black-box annotation systems, which use different algorithms for

image tagging, are used in our experiments. A good meta-learner should fare well

for different underlying black-box systems, which is what we set out to explore

here. The first is Alipr [166], which is a real-time annotation system, and the

second is a recently proposed approach [55] which was shown to outperform earlier

algorithms. Both models generate tag guesses given an image, ordered by decreas-

ing likelihoods. Annotation performance is gauged using three standard measures,

namely precision, recall and F-score that have been used in the past. Specifically,

for each image, precision=#(tags guessed correctly)
#(tags guessed)

, recall= #(tags guessed correctly)
#(correct tags)

, and F-

score=2×Precision×Recall
Precision+Recall

(harmonic mean of precision and recall). Results reported

in each case are averages over all images tested with.

The ‘lightweight’ nature of PLMFIT is validated by the fact that the (re-

)training of each visual category in [166] and [55] are reported as 109 and 106
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Table 4.1. Contextual adaptation performance on 10,000 Corel images
Approach Precision %

Change
Recall %

Change
F-
score

Baseline [55] 1 in 4 - 2 in 5 - 31.3

PLMFIT (Top r) 1 in 3 +28% 3 in 4 +83% 45.2

PLMFIT (Threshold) 2 in 5 +59% 3 in 5 +50% 48.6

seconds respectively. Therefore, at best, re-training will take these times when

the models are trained fully in parallel. In contrast, our meta-learner re-trains

on 10, 000 images in ∼ 6.5 sec. on a single machine having equivalent configu-

ration. Furthermore, the additional computation time due to the meta-learner

during annotation is negligible.

4.3.1 Contextual Adaptation of Tagging

Our first set of experiment tests the notion that PLMFIT can adapt to contextual

change, i.e., it can take a black-box annotation system trained on one type of

sample and can improve its performance on a different dataset. In the work by [55],

24, 000 Corel images, drawn from 600 image categories were used for training,

and a separate 10, 000 test images were used to assess performance. We use this

system as black-box by obtaining the word guesses made by it, along with the

corresponding ground-truth, for each image. Our meta-learner PLMFIT uses an

additional Lseed = 2, 000 images (randomly chosen, non-overlapping) from the

Corel dataset as the seed data. Therefore, effectively, (black-box + PLMFIT)

uses 26, 000 instead of 24, 000 images for training. We present results on this case

in Table 4.1. The PLMFIT performance is shown for both Top r (r = 5) and

Threshold r% (r=60), as described in Sec. 4.1.2. The baseline results are those

reported in [55]. Note the significant jump in performance with our meta-learner in

both cases. Strictly speaking, this is not a contextual change, since the black-box

was trained on Corel images and the testing was also done using Corel, although

they were non-overlapping sets. This makes the results more surprising, in that

simply adding PLMFIT to the mix makes a significant difference in performance.

Next, we perform an experiment that truly tests the contextual adaptation

power of PLMFIT. Real-world images obtained from Alipr do not share the typical
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Table 4.2. Contextual adaptation performance on 16, 000 Alipr images
Approach Precision %

Change
Recall %

Change
F-
score

Baseline [166] 17 in 100 - 2 in 5 - 24.2

PLMFIT (Top r) 22 in 100 +28% 1 in 2 +18% 30.3

PLMFIT (Threshold) 1 in 3 +95% 3 in 5 +42% 48.6

characteristics of Corel images in terms of types of images uploaded and tags given

to them. Therefore there is considerable challenge in using a Corel-trained black-

box model to tag them, as will also become evident from the baseline performance

presented here. We use both Alipr traces consisting of 10, 000 images each. It turns

out that given the Alipr Website, most people provided feedback by selection, and

a much smaller fraction typed in new tags. As a result, the recall is by default

very high for the black-box system, but it also yields poor precision. For each

Alipr trace, our meta-learner is trained on Lseed = 2, 000 seed images, and tested

on the remaining 8, 000 images. In Table 4.2, averaged-out results using PLMFIT

for both Top r (r = 5) and Threshold r% (r=75), as described in Sec. 4.1.2,

are presented alongside the baseline [166] performance on the same data (top 5

guesses). Again we observe significant performance improvements over the baseline

in both cases. As is intuitive, a lower percentile cut-off for threshold, or a higher

number r of top words both lead to higher recall, at the cost of lower precision.

Therefore, either number can be adjusted according to the specific needs of the

application. Given these results, we can conclude that PLMFIT layer provides a

statistically significant boost to image tagging performance of a black-box system

under contextual changes.

4.3.2 Adapting Tagging over Time

We now test whether the PLMFIT layer is effective at adapting to changes over

time or not. Because the Alipr data was generated by a real-world process with real

users, it makes an apt dataset for this test. Again, the black-box here is the Alipr

system, which provides guessed tags, and the Website users provide ground-truth

tags. First, we experiment with the two data traces separately. For each trace, a

seed data consisting of the first Lseed = 1, 000 images (in temporal order) is used to
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Figure 4.14. Performance (precision and F-score) of adaptation over time for Alipr
trace #1.

initially train PLMFIT. Re-training is performed in intervals of Linter = 200. We

test on the remaining 9, 000 images of the trace for (a) static tagging - PLMFIT is

not further re-trained after seed training, and (b) tagging over time - PLMFIT is re-

trained over time, using (a) Top r (r = 5), and (b) Threshold r% (r=75) in each

case. For these experiments, the persistent memory model is used. Comparison

is made using precision and F-score, with the baseline performance being that of

Alipr, the black-box. These results are shown in Figs. 4.14 and 4.15. The scores

shown are moving averages over 500 images (or less, in the case of the initial 500

images). We observe that seed training considerably boosts performance over the
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Figure 4.15. Performance (precision and F-score) of adaptation over time for Alipr
trace #2.

baseline, and this performance keeps getting better over time.

Next, we explore how the persistent and transient memory models fare against

each other. The main motivation for transient learning is to ‘forget’ earlier training

data that may have become irrelevant, due to concept drift or otherwise. Because

we observed such a shift between Alipr traces #1 and #2 (being taken over distinct

time-periods), we merged them together to obtain a single 20, 000 image trace to

emulate a scenario of shifting trend in image tagging. Performing a seed learning

over images 4, 001 to 5, 000 (part of trace #1), we test on the trace from 5, 001 to

15, 000. The results obtained using the two memory models, along with the static
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Figure 4.16. Comparison of precision and F-score for the two memory models of
incremental learning, persistent and transient.

and baseline cases, are presented in Fig. 4.16. Observe the performance dynamics

around the 10, 000 mark where the two traces are merged. While the persistent

and transient models follow each other closely till around this mark, the latter

performs better after it (by upto 10%, in precision), verifying our hypothesis that

under significant changes over time, ‘forgetting’ helps PLMFIT get adapted better.

A strategic question to ask, on implementation, is ‘How often should we re-

train PLMFIT, and at what cost?’. To analyze this, we experimented with the

10, 000 images in Alipr trace #1, varying the interval Linter between re-training

while keeping everything else identical, and measuring the F-score. In each case,
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Figure 4.17. Comparing F-score and computation time with varying Linter.

the computation durations are noted and normalized by the maximum time in-

curred, i.e., at Linter = 100. These results are presented in Fig. 4.17. Note that

with increasing gaps in re-training, F-score decreases to a certain extent, while

computation time hits a lower bound, which is the amount needed exclusively for

tagging. There is a clear trade-off between computational overhead and the F-

score achieved. A graph of this nature can therefore help decide on this trade-off

for a given application.

Finally, in Fig. 4.18, we show a sampling of images from a large number of

cases (which we found via eye-balling) where annotation performance improves

meaningfully with PLMFIT re-training over time. Specifically, at time 0 we show

the top 5 tags given to the image by Alipr. This is followed by PLMFIT’s guesses

after training with 1000 and 3000 temporally ordered images. Clearly, more correct

tags are pushed up by the meta-learning process, which improves with more re-

training data.

4.3.3 Personalized Tagging across People

Our final set of experiments are aimed at measuring the effectiveness of PLMFIT

meta-learning for the purpose of user-wise personalization. Our experiments here

are all based on 162, 650 public Flickr images belonging to 300 real users. The

black-box annotation system (baseline) used here is the Alipr algorithm [166]. Of
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Figure 4.18. Sample annotation results found to improve over time with PLMFIT
adaptation.

its vocabulary of 329, we find that 108 do not appear even once in the Flickr

dataset. Aside from performance improvement with personalization, some other

key aspects of interest were (a) vocabulary expansion, described in Sec. 4.2.3, for

expanding the tag vocabulary of the black-box, (b) the effect of the user average

method of tag selection, on personalization, and (c) the variation of performance

with the amount of per-user data samples used.

Table 4.3. Personalization performance on 162, 650 Flickr images (300 users)
Approach Precision %

Change
Recall %

Change
F-
score

Baseline [166] 1 in 60 - 1 in 25 - 2.3

PLMFIT (seed only) 1 in 14 +359% 1 in 10 +149% 8.5

PLMFIT (personalized) 1 in 7 +778% 1 in 8 +203% 13.04

PLMFIT (personalized+VE) 2 in 9 +1270% 2 in 5 +881% 27.98

VE = vocabulary expansion

First, we computed the overall performance of different PLMFIT settings as

compared to the baseline. A set of 5000 images, sampled from the full set of users,

is set aside, and used as seed. For the case of PLMFIT, the top 10 tags are used

for annotation prediction. For the purpose of personalization, the images from

each user are divided into 75% training (images previously uploaded by the user)
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Figure 4.19. Graph showing precision, recall, and F-score for a number of settings,
including Alipr’s tagging of the Flickr images (baseline), PLMFIT adaptation without
personalization (seed), and personalization with different numbers of tags predicted. The
case of ‘User Average’ uses the average number r of tags for a given user’s training data
and predicts top r tags for the test cases.

and 25% (new images uploaded) testing. The results are presented in Table 4.3.

We see that Alipr performance is significantly improved in all cases of PLMFIT

use. For 287 out of the 300 users (i.e., 95.7%), PLMFIT with personalization leads

to higher precision as well as recall than the baseline. When a random seed is

used alone, performance improvement is relatively lower than with personaliza-

tion, which can be partly explained by the graphs in Fig. 4.13. This justifies the

need for personalization as against simply using one PLMFIT model for every user,

i.e., contextual adaptation 4.2.1 helps but can be further improved with person-

alization. Of course, personalization in this manner is not possible for new users

entering the system.

Second, we explore how the final tag selection strategy affects personalization

performance. The setting remains the same as the previous case, except as speci-

fied. In Fig. 4.19, metrics are shown for the baseline, for PLMFIT with top 10, 15,

or 20 tags being selected, and when the number of tags that PLMFIT predicts is

based on the average for the given user. As expected, we see a clear trend whereby

more tags predicted lead to higher recall at the cost of lower precision. More in-

terestingly, the strategy of picking the average number of tags in the user training

data for future prediction seems to be the winning strategy in terms of F-score.

While this can be thought of as an additional personalization step, it was found to
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be much less effective for users with high variance in tag counts. A more effective

strategy can possibly be built around this fact.

Finally, we set out to test the effect of different mixes of seed data and user-

specific data for personalization. Settings remain same as before, except that the

PLMFIT model is trained differently. In these experiments, we only consider users

which have over 800 images, so that upto 800 of them can be used for training.

In our dataset, there were 83 such users, with a collective pool of 78, 928 images.

We mix randomly drawn seed images with these user-specific samples, to always

come up with 800 training images. We train PLMFIT with this set, and compute

performance metrics on the remainder of the images for that user, not used in

training. Results, averaged over all users, are plotted in Fig. 4.20. At x = 0 in

this graph, no user-specific data is used, and hence performance improvement is

not dramatic. As the user-specific sample share gets larger, performance keeps

improving, eventually flattening out at about the 0.6 mark. This can be justified

by the fact that the non-Alipr tags tend to be less generic and more localized,

thus more user data means improved estimation on these tags. We also observe

that adding more user data seems to improve performance more significantly with

vocabulary expansion than without it.
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Figure 4.20. Graph showing variation of precision and recall with a varying proportion
of seed data to user-specific samples, used for training the PLMFIT for personalization.
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4.4 Issues and Limitations

The need to bring automatic image tagging to real-world applicability inspired us to

employ a meta-learning approach. The ability to adapt to various kinds of scenario

changes in a scalable manner led us to incorporate incremental learning into the

approach. The results with our approach were found to be strongly positive, with

large jumps in tagging performance, without any significant addition to the image

analysis sophistication. That the results would be positive is very encouraging but

not surprising. At the inception of work on this problem, we held the belief that

even without extracting more profound semantics from visual features, there is a

certain unknown amount of performance gain to be got for ‘free’. During analysis

of the datasets, the rates of changes of tagging trends over time and across people

that we observed exceeded our expectations, and further strengthened this belief.

The more surprising result was how much exactly this amount turned out to be.

A small amount of additional computation leads to large performance gain.

While we are much excited about the proposed approach, here we discuss some

of its issues and limitations, and make some general comments:

• The PLMFIT approach is based on the assumption that the underlying black-

box annotation system does, to some extent, learn semantics from visual

features. A black-box system that maps image features to tags randomly is

unlikely to benefit from meta-learning. The effectiveness of inductive transfer

also depends on the nature of the black-box system.

• Unlike many other machine-learning problems, automatic image tagging ap-

proaches have historically been reported to perform moderately at best, and

the semantic gap [242] has been most often cited as the main challenge in

this learning task. PLMFIT, being dependent on an underlying annotation

system, is thus bounded by the same. Despite the significant jumps in per-

formance with our approach, the absolute values of the performance metrics

leave much to be desired. Regardless, in this problem domain, a moderate

precision and recall can still prove to be very useful in real-world applications.

• The choice of black-box annotation systems for testing PLMFIT was based

on availability. We wish to experiment with other systems as well.
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• The experimental results are based on real-world samples, but those samples

do not represent every possible dynamism. We are unable to conclude on the

adaptability of our approach under, for example, extreme changes.

• The ‘new user’ problem of personalization exists here as well. We use a

generic ‘prior’ model for new users, estimated from all users, but performance

gain is not as significant as when some of the user’s data is used in training.

There is a possibility of exploiting the local neighborhood around a new user

to obtain a more specific prior model, but we have not experimented with

this idea.

• While adaptation over time and across people have been treated as separate

scenarios, it is practical to also analyze adaptation performance under simul-

taneous change of time and users. We have skipped this combined analysis

in order to keep the focus on the main contributions.

• In our Flickr dataset, tags exhibit a heavy-tailed distribution. Prior to prun-

ing the tags by frequency, over 73% of the tags appeared only once. Models

cannot be trained with them, which means that the heavy-tail imposes an

upper-bound on recall.

• If the tag vocabulary consists of mostly proper nouns and non-English terms,

as in the case of our Flickr dataset, an annotation system may well be predict-

ing semantically correct tags, but there is no easy way to assess performance.

Such a system will be useful for semantic image organization, but not in mim-

icking user tagging. The role of WordNet is also greatly diminished in such

cases.

• While the proposed models and algorithms are designed specifically for the

image tagging problem, they can generally apply to any learning task that

involves making multiple binary decisions on each data point.

Despite these issues and limitations, the results presented in this chapter should

encourage a greater use of meta-learning and a greater focus on the real-world

applicability of automatic image tagging.
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4.5 Summary

In this chapter, we have proposed the use of meta-learning and incremental learning

to make automatic image tagging applicable in the real-world. We have proposed

a principled, lightweight, meta-learning framework for image tagging (PLMFIT),

inspired by inductive transfer, which can augment existing annotation systems, to

allow adaptation to changes of any nature, such as contextual changes. We have

proposed an algorithm to make use of PLMFIT to improve and adapt tagging over

the time domain, and showed it to be effective. Finally, an algorithm that uses

PLMFIT for personalized tagging has been proposed. The personalized version of

PLMFIT is found to produce significantly better results than the generic version,

showing improved tagging precision as well as recall for over 95% of the users

in the Flickr dataset. In achieving this goal, methods to allow expansion of the

system’s tag vocabulary beyond that of the initial version, has been presented.

In all cases, efficiency is achieved via incremental learning, and the methods have

been validated using large real-world datasets. In general, we can conclude that the

meta-learning approach to image tagging appears has many attractive properties.



Chapter 5
Beyond Semantics:

Basics, Inference, and Applications

of Aesthetics

The image processing and analysis community has, for long, attempted to quantify

and rectify image quality at a low-level, given the original image [77] or without

it [236]. At a higher level, the perception often affects our emotion and mood,

but there has been little headway made in automatic inferencing of the quality in

images that affect mood or emotion. What makes the latter problem hard is that

low-level image properties are insufficient to characterize high-level perception of

aesthetics. Furthermore, there is a lack of precise definitions, assessment metrics,

and test data for this problem, despite being desirable for many applications, e.g.,

image search, photography, story illustration, and photo enhancement.

In this chapter, we attempt to clear the cloud on the problem of natural image

aesthetics inference from visual content, by defining problems of interest, target

audiences and how they affect the problem at hand, assessment metrics, and in-

troduce real-world datasets for testing. Insights are drawn from the handful of

previous attempts [56, 61, 141, 258] at solving related problems. While facial at-

tractiveness has been a theme for many popular Websites [206], and has led to

work on automatic facial aesthetics inference [75] that make use of symmetry and

proportion, here we concern ourselves with generic images.
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Figure 5.1. Three aesthetics inferencing problems of significance.

5.1 Questions of Interest

Being in its nascent stage, research on algorithmic aesthetics inference needs con-

cretely defined tasks to solve, to start with. Aesthetics of natural images are,

simply put, the emotions they arouse in people, which makes it relatively ill-

defined. Contentious issues are ‘emotion’ and ‘people’. Emotions are subjective

across individuals, and they are of varied types (pleasing, boring, irritating, etc.).

We leave aside subjectivity for now and consider aesthetic attributes to be a con-

sensus measure over the entire population, such that they are meaningful to the

average individual. Three data-driven aesthetics inference questions (Fig. 5.1) are

discussed below.

5.1.1 Aesthetics Score Prediction

When a photograph is rated by a set of n people on a 1 to D scale on the basis of

its aesthetics, the average score can be thought of as an estimator for its intrinsic

aesthetic quality. More specifically, we assume that an image I has associated

with it a true aesthetics measure q(I), which is the asymptotic average if the

entire population rated it. The average over the size n sample of ratings, given by

q̂(I) = 1
n

∑n
i=1 ri(I) is an estimator for the population parameter q(I), where ri(I)

is the ith rating given to image I. Intuitively, a larger n gives a better estimate.
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A formulation for aesthetics score prediction is therefore to infer the value of q̂(I)

by analyzing the content of image I, which is a direct emulation of humans in the

photo rating process. This lends itself naturally to a regression setting, whereby

some abstractions of visual features act as predictor variables and the estimator

for q̂(I) is the dependent variable. An attempt at regression based score prediction

has been reported in [56], showing very limited success.

Assessment: One method for assessing the quality of scoring prediction is to

compute the rate or distribution of error [56].

5.1.2 Aesthetics Class Prediction

It has been observed both in [56] and [141] that score prediction is a very chal-

lenging problem, mainly due to noise in user ratings. Given the limited size rating

samples, their averaged estimates have high variance, e.g., 5 and 5.5 on a 1−7 scale

could easily have been interchanged if a different set of users rated them, but there

is no way to infer this from content alone, which leads to large prediction errors.

To make the problem more solvable, the regression problem is changed to one of

classification, by thresholding the average scores to create high vs. low quality im-

age classes [56], or professional vs. snapshot image classes [141]. Suppose threshold

values are HIGH and LOW respectively, then class(I) is 1 if q̂(I) ≥ HIGH and 0

if q̂(I) ≤ LOW . When the band gap δ = HIGH−LOW increases, the two classes

are more easily separable, a hypothesis that has been tested and found to hold,

in [56]. An easier problem but of practical significance is that of selecting a few

representative high quality or highly aesthetic photographs from a large collection.

In this case, it is important to ensure that most of the selected images are of high

quality even though many of those not selected may be of high quality as well. An

attempt at this problem [61] has proven to be more successful than the general

HIGH/LOW classification problem described previously.

Assessment: The HIGH/LOW classification problem solutions can be evaluated

by standard accuracy measures [56, 141]. On the other hand, the selection of high-

quality photos need only maximize the precision in high quality within the top few

photos, with recall being less critical.
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5.1.3 Emotion Prediction

If we group emotions that natural images arouse into categories such as ‘pleasing’,

‘boring’, and ‘irritating’, then emotion prediction can be conceived as a multi-class

categorization problem. These categories are fuzzily defined and and judgments

are highly subjective. Consider K such emotion categories, and people select

one or more of these categories for each image. If an image I gets votes in the

proportion Π1(I), . . . , ΠK(I), then two possible questions arise, none of which have

been attempted in the past.

Most Dominant Emotion: We wish to predict, for an image I, the most voted

emotion category k(I), i.e., k(I) = arg maxi Πi(I). The problem is only meaningful

when there is clear dominance of k(I) over others, thus only these samples must

be used for learning.

Emotion Distribution: Here, we wish to predict the distribution of votes (or an

approximation) that an image receives from users, i.e., Π1(I), . . . , ΠK(I), which is

well-suited when images are fuzzily associated with multiple emotions.

Assessment: The ‘most dominant emotion’ problem is assessed like any standard

multi-class classification problem. For ‘emotion distribution’, assessment requires

a measure of similarity between discrete distributions, for which Kullback-Leibler

(KL) divergence is a possible choice.

5.1.4 Context

In practice, any solution to the above problems can be tested either by user-

generated feedback in online photo-sharing communities [213, 71, 3, 206], or by

controlled user studies. Given this data-dependence, none of the models proposed

will be fundamental or absolute in what they learn about aesthetics, but will

be tempered to the given data acquisition setup, which we call the context. For

example, what is considered ‘interesting’ (Flickr) may not be treated as being

‘aesthetically pleasing’ (Photo.net) by the population, and vice-versa. Therefore,

we implicitly refer to it as aesthetics inference under a given context X . Examples

of key contextual aspects of test data are (a) the exact question posed to the users

about the images, e.g., ‘aesthetics’ [213], ‘overall quality’ [71], ‘like it’ [3], (b) the

type of people who visit and vote on the images, e.g., general enthusiasts [71,
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213], photographers [213], and (c) The type of images rated, e.g., travel [251],

topical [71]. Until fundamentals of aesthetics judgment are uncovered, contextual

information is critical. The long-term goal is to have solutions that apply to as

general a context as possible.

5.1.5 Personalization

While consensus measures and averaged-out ratings provide a generic learning set-

ting, personalized models are of high relevance here due to the significant amount

of subjectivity. In line with recommender systems, personalized models of aes-

thetics can potentially be learned, given sufficient feedback from a single user.

In the absence of sufficient feedback from individuals, one solution is to consider

cliques (groups or clusters of people with shared taste) instead of individuals, and

make personalized inferences with respect to an user’s parent clique, thus provid-

ing more data to learn. The cliques should ideally be determined automatically,

may be overlapping, and an individual may belong to multiple cliques. There has

been no reported attempt at personalized aesthetics.

5.2 Technical Solution Approaches

Analogous to the concept of semantic gap that implies the technical limitations of

image recognition, we can define the technical challenge in automatic inference of

aesthetics in terms of the aesthetic gap, as follows:

The aesthetic gap is the lack of coincidence between the information

that one can extract from low-level visual data (i.e., pixels in digital

images) and the interpretation of emotions that the visual data may

arouse in a particular user in a given situation.

Past attempts [61, 141, 258] at aesthetics and quality inference have followed a

logical series of steps, as discussed below.
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5.2.1 Feature Shortlisting

Possibly the most challenging part of the problem is conceiving meaningful visual

properties that may have correlation with human ratings, and devising ways to

convert them into numerical features. While feature shortlisting is largely ad-hoc

in [258], the photography literature provides much of the intuitions for [56, 141].

The hypothesis there is that photographers follow principles (rule of thirds, com-

plementary colors, etc.) that lead to aesthetically pleasing shots. The features

proposed previously are limited, so there is scope for more comprehensive short-

listing.

5.2.2 Feature Selection

Once a feature set is decided, the hypothesis needs to be tested so as to eliminate

those that in reality show no correlation with human ratings, given the data. For

feature selection, [258] employs boosting, while [56] uses forward selection. There

is further scope for effective exploitation of correlation across features in aesthetics

modeling.

5.2.3 Statistical Learning and Inferencing

A suitable learning method, that makes use of the selected features to model aes-

thetics, is essential. Previous attempts have employed decision trees [56], Bayesian

classifiers [61, 141, 258], SVMs [56, 258], boosting [258], and regression [56, 61],

for answering one or more of the questions in Sec. 5.1. In general, we need some

form of regression for score prediction (Sec. 5.1.1), a two-class classifier for class

prediction (Sec. 5.1.2), and a multi-class discriminative or generative classifier for

emotion prediction (Sec. 5.1.3). Because past efforts have yielded only limited

success, a deeper exploration is needed to figure out if feature extraction alone is

the performance bottleneck, or whether better learning method can also improve

performance.
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Table 5.1. Datasets available for emotion/aesthetics learning.
Source Feedback Type Average

Scores
Score
Distribution

Individual
Scores

Photo.net 1-7 (aesthetics) Yes Yes Yes
(partial)

DPChallenge 1-10 (quality) Yes Yes No
Terragalleria 1-10 (liking) Yes Yes No
Alipr.com Emotion (8 types) n/a n/a n/a

5.3 Public Datasets for Empirical Modeling

Due to lack of theoretical grounding and controlled experimental data, there is

heavy dependence on publicly available data for understanding, development, and

validation for this problem, which include Web-based sources [3, 213, 251, 71] that

solicit user feedback on image quality and aesthetics. A summary of some sources

and the characteristics of available data is presented in Table 5.1. We collected

large samples from each data source, drawing at random, to create real-world

datasets (to be available at http://riemann.ist.psu.edu/) that can be used to

compare competing algorithms. A description and preliminary analysis follows.

Photo.net: This Website [213] provides a platform for photography enthusiasts

to share and get their shots peer-rated on a 1− 7 scale on their aesthetic quality.

We collected a set of 14, 839 images, each rated by at least one user. The mean

number of ratings per image is 12, with a std. dev. of 13. A smaller dataset from

this source has been used before [56, 61].

DPChallenge: This Website [71] allows users to participate in theme-based pho-

tography contests, and peer-rating on overall quality, on a 1-10 scale, determines

winners. We collected 16, 509 images, each rated by at least one user. The mean

number of ratings per image is 205, with a std. dev. of 53. A smaller dataset from

this source has been before [141].

Terragalleria: This Website [251] showcases travel photography of Quang-Tuan

Luong, and is one of the best sources of US national park photography. Thus, all

photographs are taken by one person (unlike before), but multiple users rate them

on overall quality, on a 1-10 scale. The mean number of ratings per image is 22,

with a std. dev. of 23. We obtained 14, 449 images from here, each rated by at

least one user.
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Figure 5.2. Distributions of the average photo ratings received.

Alipr: This Website [3], primarily meant for image search and tagging, also allows

users to rate photographs on the basis of 10 different emotions (See Fig.5.6). We

collected 13, 010 emotion-tagged images (with repetitions).

5.3.1 Analysis

For the benefit of experimental design and dataset selection, we report on an

analysis of each dataset, in particular the nature of user ratings received in each

case (not necessarily comparable across the datasets). Figures 5.2 and 5.3 show the

average score and score count distributions respectively, of sources [213, 71, 251].

Considering that the three scales are normalized to the same range, DPChallenge

ratings are lower, on an average, which might reflect on the competitive nature.

For the same reason, the number of ratings received per image are higher than the

other two, which indicate that the averaged scores represent the consensus better.

We then look at the correlation between the number of ratings and the average

score for each image, by plotting the tuple corresponding to each image, in Fig. 5.4.
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Figure 5.3. Distributions of number of photo ratings received per image.
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Figure 5.4. Correlation plot of (average score, number of ratings) pairs.

Considering uniform random samples, the graphs indicate that in Photo.net and

Terragalleria more users rate higher quality photographs, while this skewness is

less prominent in DPChallenge. This must be carefully considered when designing

inference methods. Another point of interest is consensus, i.e., the extent of agree-

ability in rating, among users. Let n be the number of ratings given by users, a be

their average, and x be the number of ratings within a ± 0.5, with greater value
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Figure 5.5. Distribution of the level of consensus among ratings.

indicating greater consensus. The distribution of x/n over all images is shown

in Fig. 5.5, which roughly indicates that Photo.net has better consensus over the

ratings than the other two.
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Figure 5.6. Distribution of emotion votes given to images (Alipr).

Finally, we plot the distribution of emotion votes for the dataset sampled from

Alipr [3], where ‘pleasing’ may be related to high aesthetics or quality, while ‘bor-

ing’ or ‘no feeling’ may indicate otherwise. Despite over 13, 000 votes, the number

of them on a per-image basis is low. For higher reliability, we must wait till a

greater number of votes are cast.
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5.4 Visual Features for Photographic Aesthetics

Photography is the art or practice of taking and processing photographs [217].

Aesthetics in photography is how people usually characterize beauty in this form

of art. There are various ways in which aesthetics is defined by different people.

There exists no single consensus on what it exactly pertains to. The broad idea is

that photographic images that are pleasing to the eyes are considered to be higher

in terms of their aesthetic beauty. What pleases or displeases one person may

be different from what pleases or displeases another person. While the average

individual may simply be interested in how soothing a picture is to the eyes, a

photographic artist may be looking at the composition of the picture, the use

of colors and light, and any additional meanings conveyed by the picture. A

professional photographer, on the other hand, may be wondering how difficult it

may have been to take or to process a particular shot, the sharpness and the

color contrast of the picture, or whether the “rules of thumb” in photography

have been maintained. All these issues make the measurement of aesthetics in

pictures or photographs extremely subjective. In spite of the ambiguous definition

of aesthetics, we show in this chapter that there exist certain visual properties

which make photographs, in general, more aesthetically beautiful than some others.

Our results and findings could be of interest to the scientific community, as well as

to the photographic art community and manufacturers for image capturing devices.

Content analysis in photographic images has been studied by the multimedia and

vision research community in the past decade. Today, several efficient region-

based image retrieval engines are in use [177, 30, 278, 243]. Statistical modeling

approaches have been proposed for automatic image annotation [9, 163]. Culturally

significant pictures are being archived in digital libraries. Online photo sharing

communities are becoming more and more common [2, 7, 88, 213]. In this age of

digital picture explosion, it is critical to continuously develop intelligent systems

for automatic image content analysis. The advantages of such systems can be

reaped by the scientific community as well as common people.
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tographs obtained from Photo.net.

5.4.1 Photo.net: Community-based Photo Ratings

As discussed previously, a good data source for empirical modeling of aesthetics

is the large on-line photo sharing community, Photo.net, started in 1997 by Philip

Greenspun, then a researcher on online communities at MIT [213]. Primarily

intended for photography enthusiasts, the Website attracts more than 400, 000

registered members. Many amateur and professional photographers visit the site

frequently, share photos, and rate and comment on photos taken by peers. There

are more than one million photographs uploaded by these users for perusal by the

community. Of interest to us is the fact that many of these photographs are peer-

rated in terms of two qualities, namely aesthetics and originality. The scores are

given in the range of one to seven, with a higher number indicating better rating.

This site acts as the main source of data for our computational aesthetics work.

The reason we chose such an online community is that it provides photos which are

rated by a relatively diverse group. This ensures generality in the ratings, averaged

out over the entire spectrum of amateurs to serious professionals. While amateurs

represent the general population, the professionals tend to spend more time on the

technical details before rating the photographs. This is evident from the comments

that are posted by peers on photographs, often in an attempt to justify their

ratings. Because this is a photo sharing community, there can be some bias towards
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the opinions of professional photographers over the general population, but this

is not critical since opinions of professionals often reflect on what satisfies their

customers on an average. Hence, we use these ratings as indicators of aesthetics

in photography. We recommend the readers to peruse the aforementioned Website

to get a better understanding of the data source. One caveat: The nature of any

peer-rated community is such that it leads to unfair judgements under certain

circumstances, and Photo.net is no exception, making the data fairly noisy.

We downloaded those pictures and their associated meta-data which were rated

by at least two members of the community. In order not to over-distract the

normal services provided by the site, we downloaded the data slowly and over a

long-period of time for our research. For each image downloaded, we parsed the

pages and gathered the following information: (1) average aesthetics score between

1.0 and 7.0, (2) average originality score between 1.0 and 7.0, (3) number of times

viewed by members, and (4) number of peer ratings.

5.4.2 Aesthetics v/s Originality

By definition[217], Aesthetics means (1) “concerned with beauty and art and the

understanding of beautiful things”, and (2) “made in an artistic way and beautiful to

look at”. A more specific discussion on the definition of aesthetics can be found in

[214]. As can be observed, no consensus was reached on the topic among the users,

many of whom are professional photographers. Originality has a more specific

definition of being something that is unique and rarely observed. The originality

score given to some photographs can also be hard to interpret, because what seems

original to some viewers may not be so for others. Depending on the experiences

of the viewers, the originality scores for the same photo can vary considerably.

Thus the originality score is subjective to a large extent as well. Even then, the

reasons that hold for aesthetics ratings also hold for originality, making this data

a fairly general representation of the concept of originality and hence safe to use

for statistical learning purposes.

One of the first observations made on the gathered data was the strong corre-

lation between the aesthetics and originality ratings for a given image. A plot of

3581 unique photograph ratings can be seen in Fig. 5.7. As can be seen, aesthetics
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Figure 5.8. Aesthetics scores can be significantly influenced by the semantics. Loneli-
ness is depicted using a person in this frame, though the area occupied by the person is
very small. Average aesthetics score for these images are 6.0 out of 7 (left) and 6.61 out
of 7 (right).

and originality ratings have approximately linear correlation with each other. This

can be due to a number of factors. Many users quickly rate a batch of photos in

a given day. They tend not to spend too much time trying to distinguish between

these two parameters when judging a photo. They more often than not rate pho-

tographs based on a general impression. Typically, a very original concept leads

to good aesthetic value, while beauty can often be characterized by originality in

view angle, color, lighting, or composition. Also, because the ratings are averages

over a number of people, disparity by individuals may not be reflected as high in

the averages. Hence there is generally not much disparity in the average ratings.

In fact, out of the 3581 randomly chosen photos, only about 1.1% have a disparity

of more than 1.0 between average aesthetics and average originality, with a peak

of 2.0.

As a result of this observation, we chose to limit the rest of our study to aes-

thetics ratings only, since the value of one can be approximated to the value of

the other, and among the two, aesthetics has a rough definition that in princi-

ple depends somewhat less on the content or the semantics of the photograph,

something that is very hard for present day machine intelligence to interpret ac-

curately. Nonetheless, the strong dependence on originality ratings mean that

aesthetics ratings are also largely influenced by the semantics. As a result, some

visually similar photographs are rated very differently. For example in Fig. 5.8,

loneliness is depicted using a man in each frame, increasing its appeal, while the

lack of the person makes the photographs uninteresting and is likely causing poorer



152

ratings from peers. This makes the task of automatically determining aesthetics

of photographs highly challenging.

5.4.3 Our Approach to Aesthetics Inference

Our desire is to take the first step in understanding what aspects of a photograph

appeal to people, from a population and statistical stand-point. For this purpose,

we aim to build (1) a classifier that can qualitatively distinguish between pictures

of high and low aesthetic value, or (2) a regression model that can quantitatively

predict the aesthetics score, both approaches relying on low-level visual features

only. We define high or low in terms of predefined ranges of aesthetics scores.

There are reasons to believe that classification may be a more appropriate

model than regression in tackling this problem. For one, the measures are highly

subjective, and there are no agreed standards for rating. This may render absolute

scores less meaningful. Again, ratings above or below certain thresholds on an

average by a set of unique users generally reflect on the photograph’s quality. This

way we also get around the problem of consistency where two identical photographs

can be scored differently by different groups of people. However, it is more likely

that both the group averages are within the same range and hence are treated

fairly when posed as a classification problem.

On the other hand, the ‘ideal’ case is when a machine can replicate the task

of robustly giving images aesthetics scores in the range of (1.0-7.0) the humans

do. This is the regression formulation of the problem. Nevertheless, in this work

we attempt both classification and regression models on the data. The possible

benefits of building a computational aesthetics model can be summarized as follow:

If the low-level image features alone can tell what range aesthetics ratings the image

deserves, this can potentially be used by photographers to get a rough estimate

of their shot composition quality, leading to adjustment in camera parameters or

shot positioning for improved aesthetics. Camera manufacturers can incorporate a

‘suggested composition’ feature into their products. Alternatively, a content-based

image retrieval system can use the aesthetics score to discriminate between visually

similar images, giving greater priority to more pleasing query results. A reasonable

solution to this problem can lead to a better understanding of human vision.
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5.5 Feature Extraction

Experiences with photography lead us to believe in certain aspects as being critical

to quality. This entire study is on such beliefs or hypotheses and their validation

through numerical results. We treat each downloaded image separately and extract

features from them. We use the following notation: The RGB data of each image

is converted to HSV color space, producing two-dimensional matrices IH , IS, and

IV , each of dimension X×Y . In photography and color psychology, color tones and

saturation play important roles, and hence working in the HSV color space makes

computation more convenient. For some features we extract information from

objects within the photographs. An approximate way to find objects within images

is segmentation, under the assumption that homogeneous regions correspond to

objects. We use a fast segmentation method based on clustering. For this purpose

the image is transformed into the LUV space, since in this space locally Euclidean

distances model the perceived color change well. Using a fixed threshold for all the

photographs, we use the K-Center algorithm to compute cluster centroids, treating

the image pixels as a bag of vectors in LUV space. With these centroids as seeds, a

K-means algorithm computes clusters. Following a connected component analysis,

color-based segments are obtained. The 5 largest segments formed are retained and

denoted as {s1, ..., s5}. These clusters are used to compute region-based features as

we shall discuss in Sec. 5.5.8.

We extracted 56 visual features for each image in an empirical fashion, based

on (a) our own intuitions, (b) comments posted by peers on a large collection

of high and low rated pictures, and (c) ease of interpretation of results. The

feature set was carefully chosen but limited because our goal was mainly to study

the trends or patterns, if any, that lead to higher or lower aesthetics ratings. If

the goal was to only build a strong classifier or regression model, it would have

made sense to generate exhaustive features and apply typical machine-learning

techniques such as boosting. Without meaningful features it is difficult to make

meaningful conclusions from the results. We refer to our features as candidate

features and denote them as F = {fi|1 ≤ i ≤ 56} which are described as follows.
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5.5.1 Exposure of Light

Measuring the brightness using a light meter and a gray card, controlling the

exposure using the aperture and shutter speed settings, and darkroom printing

with dodging and burning are basic skills for any professional photographer. Too

much exposure (leading to brighter shots) often yields lower quality pictures. Those

that are too dark are often also not appealing. Thus light exposure can often be

a good discriminant between high and low quality photographs. Note that there

are always exceptions to any ‘rules of thumb’. An over-exposed or under-exposed

photograph under certain scenarios may yield very original and beautiful shots.

Therefore it is prudent to not expect or depend too much on individual features.

This holds for all features, since photographs in [213] are too diverse to be judged

by a single parameter. Ideally, the use of light should be characterized as normal

daylight, shooting into the sun, backlighting, shadow, night etc. We use the average

pixel intensity to characterize the use of light:

f1 =
1

XY

X1∑

x=0

Y−1∑

y=0

IV (x, y) .

5.5.2 Colorfulness

We propose a fast and robust method to compute relative color distribution, distin-

guishing multi-colored images from monochromatic, sepia 1 or simply low contrast

images. We use the Earth Mover’s Distance (EMD) [221], which is a measure

of similarity between any two weighted distributions. We divide the RGB color

space into 64 cubic blocks with four equal partitions along each dimension, tak-

ing each such cube as a sample point. Distribution D1 is generated as the color

distribution of a hypothetical image such that for each of 64 sample points, the

frequency is 1/64. Distribution D2 is computed from the given image by find-

ing the frequency of occurrence of color within each of the 64 cubes. The EMD

measure requires that the pairwise distance between sampling points in the two

distributions be supplied. Since the sampling points in both of them are identi-

cal, we compute the pairwise Euclidean distances between the geometric centers

1http://www.knaw.nl/ecpa/sepia/home.html
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ci of each cube i, after conversion to LUV space. Thus the colorfulness measure

f2 is computed as follows: f2 = emd(D1, D2, {d(a, b) | 0 ≤ a, b ≤ 63}), where

d(a, b) = ||rgb2luv(ca)− rgb2luv(cb)|| .

Figure 5.9. The proposed colorfulness measure, f2. The two photographs on the left
have high values while the two on the right have low values.

The distribution D1 can be interpreted as the ideal color distribution of a

‘colorful’ image. How similar the color distribution of an arbitrary image is to

this one is a rough measure of how colorful that image is. Examples of images

producing high and low values of f2 are shown in Fig. 5.9.

5.5.3 Saturation and Hue

Saturation indicates chromatic purity. Pure colors in a photo tend to be more

appealing than dull or impure ones. In natural out-door landscape photography,

professionals use specialized film such as the Fuji Velvia to enhance the saturation

to result in deeper blue sky, greener grass, more vivid flowers, etc. We compute

the saturation indicator as the average saturation f3 over the picture,

f3 =
1

XY

X−1∑

x=0

Y−1∑

y=0

IS(x, y) .

Hue is similarly computed averaged over IH to get feature f4, though the inter-

pretation of such a feature is not as clear as the former. This is because hue as

defined in the HSV space corresponds to angles in a color wheel.

5.5.4 The Rule of Thirds

A very popular rule of thumb in photography is the Rule of Thirds. The rule

can be considered as a sloppy approximation to the ‘golden ratio’ (about 0.618),

a visualization proportion discovered by the ancient Greeks. It specifies that the
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main element, or the center of interest, in a photograph should lie at one of the

four intersections as shown in Fig. 5.10 (a). Browsing through a large number of

professional photographs it was observed that most of those that follow this rule

have the main object stretch from an intersection up to the center of the image.

Also noticed was the fact that centers of interest, e.g., the eye of a man, were often

placed aligned to one of the edges, on the inside. This implies that a large part of

the main object often lies on the periphery or inside of the inner rectangle. Based

on these observations, we computed the average hue as feature f5, with f6 and f7

being similarly computed for IS and IV respectively:

f5 =
9

XY

2X/3∑

x=X/3

2Y/3∑

y=Y/3

IH(x, y)

Although it may seem redundant to use as feature vectors the average satura-

tion and intensity once for the whole image and once for the inner third, it must

be noted that the latter may often pertain exclusively to the main object of in-

terest within the photograph, and hence can potentially convey different kind of

information.

5.5.5 Familiarity Measure

We humans learn to rate the aesthetics of pictures from the experience gathered

by seeing other pictures. Our opinions are often governed by what we have seen

in the past. Because of our curiosity, when we see something unusual or rare we

perceive it in a way different from what we get to see on a regular basis. In or-

der to capture this factor in human judgment of photography, we define a new

measure of familiarity based on the integrated region matching (IRM) image dis-

tance [278]. The IRM distance computes image similarity by using color, texture

and shape information from automatically segmented regions, and performing a

robust region-based matching with other images. Primarily meant for image re-

trieval applications, we use it here to quantify familiarity. Given a pre-determined

anchor database of images with a well-spread distribution of aesthetics scores, we

retrieve the top K closest matches in it with the candidate image as query. Denot-

ing IRM distances of the top matches for each image in decreasing order of rank
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(a) (b)

LL HL

LH HH

(c) (d)

Figure 5.10. (a) The rule of thirds in photography: Imaginary lines cut the image
horizontally and vertically each into three parts. Intersection points are chosen to place
important parts of the composition instead of the center. (b)-(d) Daubechies wavelet
transform. Left: Original image. Middle: Three-level transform, levels separated by
borders. Right: Arrangement of three bands LH, HL and HH of the coefficients.

as {q(i)|1 ≤ i ≤ K}. We compute f8 and f9 as

f8 =
1

20

20∑

i=1

q(i) , f9 =
1

100

100∑

i=1

q(i) .

In effect, these measures should yield higher values for uncommon images (in

terms of their composition). Two different scales of 20 and 100 top matches are

used since they may potentially tell different stories about the uniqueness of the

picture. While the former measures average similarity in a local neighborhood, the

latter does so on a more global basis. Because of the strong correlation between

aesthetics and originality, it is intuitive that a higher value of f8 or f9 corresponds

to greater originality and hence we expect greater aesthetics score.
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5.5.6 Wavelet-based Texture

Graininess or smoothness in a photograph can be interpreted in different ways. If

as a whole it is grainy, one possibility is that the picture was taken with a grainy

film or under high ISO settings. If as a whole it is smooth, the picture can be

out-of-focus, in which case it is in general not pleasing to the eye. Graininess can

also indicate the presence/absence and nature of texture within the image.

The use of texture is a composition skill in photography. One way to measure

spatial smoothness in the image is to use Daubechies wavelet transform [63], which

has often been used in the literature to characterize texture. We perform a three-

level wavelet transform on all three color bands IH , IS and IV . An example of such

a transform on the intensity band is shown in Fig. 5.10 (b)-(c). The three levels

of wavelet bands are arranged from top left to bottom right in the transformed

image, and the four coefficients per level, LL, LH, HL, and HH are arranged as

shown in Fig. 5.10 (d). Denoting the coefficients (except LL) in level i for the

wavelet transform on hue image IH as whh
i , whl

i and wlh
i , i = {1, 2, 3}, we define

features f10, f11 and f12 as follows:

fi+9 =
1

Si

{∑

x

∑

y

whh
i (x, y) +

∑

x

∑

y

whl
i (x, y) +

∑

x

∑

y

wlh
i (x, y)

}

where Sk = |whh
i |+ |whl

i |+ |whh
i | and i = 1, 2, 3. The corresponding wavelet features

for saturation (IS) and intensity (IV ) images are computed similarly to get f13

through f15 and f16 through f18 respectively. Three more wavelet features are

derived. The sum of the average wavelet coefficients over all three frequency levels

for each of H, S and V are taken to form three additional features: f19 =
∑12

i=10 fi,

f20 =
∑15

i=13 fi, and f21 =
∑18

i=16 fi.

5.5.7 Size and Aspect Ratio

The size of an image has a good chance of affecting the photo ratings. Although

scaling is possible in digital and print media, the size presented initially must be

agreeable to the content of the photograph. A more crucial parameter is the aspect

ratio. It is well-known that 4 : 3 and 16 : 9 aspect ratios, which approximate the

‘golden ratio,’ are chosen as standards for television screens or 70mm movies, for
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Figure 5.11. The HSV Color Space.

reasons related to viewing pleasure. The 35mm film used by most photographers

has a ratio of 3 : 2 while larger formats include ratios like 7 : 6 and 5 : 4. While

size feature f22 = X + Y , the aspect ratio feature f23 = X
Y

.

5.5.8 Region Composition

Segmentation results in rough grouping of similar pixels, which often correspond

to objects in the scene. We denote the set of pixels in the largest five connected

components or patches formed by the segmentation process described before as

{s1, ...s5}. The number of patches t ≤ 5 which satisfy |si| ≥ XY
100

denotes feature

f24. The number of color-based clusters formed by K-Means in the LUV space is

feature f25. These two features combine to measure how many distinct color blobs

and how many disconnected significantly large regions are present.

We then compute the average H, S and V values for each of the top 5 patches as

features f26 through f30, f31 through f35 and f36 through f40 respectively. Features

f41 through f45 store the relative size of each segment with respect to the image,

and are computed as fi+40 = |si|/(XY ) where i = 1, ..., 5.

The hue component of HSV is such that the colors that are 180◦ apart in the

color circle (Fig. 5.11) are complimentary to each other, which means that they

add up to ‘white’ color. These colors tend to look pleasing together. Based on this

idea, we define two new features, f46 and f47 in the following manner, corresponding

to average color spread around the wheel and average complimentary colors among

the top 5 patch hues. These features are defined as

f46 =

5∑

i=1

5∑

j=1

|hi − hj|, f47 =

5∑

i=1

5∑

j=1

l(|hi − hj|), hi =
∑

(x,y)∈si

IH(x, y)
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where l(k) = k if k ≤ 180◦, 360◦ − k if k > 180◦ . Finally, the rough positions of

each segment are stored as features f48 through f52. We divide the image into 3

equal parts along horizontal and vertical directions, locate the block containing the

centroid of each patch si, and set f47+i = (10r + c) where (r, c) ∈ {(1, 1), ..., (3, 3)}
indicates the corresponding block starting with top-left.

5.5.9 Low Depth of Field Indicators

(a) macro (b) telephoto

Figure 5.12. Aesthetics ratings are often higher for images with low depth of field. (a)
6.37 out of 7 (b) 6.25 out of 7

Pictures with a simplistic composition and a well-focused center of interest are

sometimes more pleasing than pictures with many different objects (see Fig. 5.12).

Professional photographers often reduce the depth of field (DOF) for shooting sin-

gle objects by using larger aperture settings, macro lenses, or telephoto lenses.

DOF is the range of distance from a camera that is acceptably sharp in the pho-

tograph. A typical camera is an optical system containing a lens and an image

screen. The lens creates images in the plane of the image screen, which is normally

parallel to the lens plane. Denote the focal length of the lens by f and its diameter

by a. Denote the aperture f-stop number for this photo by p. Then f = ap. Sup-

pose the image screen is at distance d from the lens and the object is at distance

s from the lens. If the object is in focus, then the Gaussian thin lens law holds:
1
s
+ 1

d
= 1

f
. A point closer or farther away from the lens than s is imaged as a circle

rather than a point. On the photo, areas in the DOF are noticeably sharper.

By browsing the images and ratings, we noticed that a large number of low

DOF photographs, e.g., insects, other small creatures, animals in motion, were

given high ratings. One reason may be that these shots are difficult to take, since
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it is hard to focus steadily on small and/or fast moving objects like insects and

birds. A common feature is that they are taken either by macro or by telephoto

lenses. We propose a novel method to detect low DOF and macro images. We

divide the image into 16 equal rectangular blocks {M1, ...M16}, numbered in row-

major order. Let w3 = {wlh
3 , whl

3 , whh
3 } denote the set of wavelet coefficients in the

high-frequency (level 3 by the notation in Sec. 5.5.6) of the hue image IH . The

low depth of field indicator feature f53 for hue is computed as follows, with f54 and

f55 being computed similarly for IS and IV respectively:

f53 =

∑
(x,y)∈M6∪M7∪M10∪M11

w3(x, y)
∑16

i=1

∑
(x,y)∈Mi

w3(x, y)

The idea here is that the object of interest in a macro shot is usually near the

center, where there is sharp focus, while the surrounding is usually out of focus due

to low DOF. This essentially means that a large value of the low DOF indicator

features tend to occur for macro and telephoto shots.

5.5.10 Shape Convexity

All of the previously discussed features were either related to color, composition, or

texture. It is believed that shapes in a picture also influence the degree of aesthetic

beauty perceived by humans. The challenge in designing a shape feature lies in

the understanding of what kind of shape pleases humans, and whether any such

measure generalizes well enough or not. As always, we hypothesize that convex

shapes (perfect moon, well-shaped fruits, boxes, windows etc.) have an appeal

(positive or negative) different from concave or highly irregular shapes. Let the

image be segmented, as described before, and R patches {p1, ..., pR} are obtained

such that |pk| ≥ XY
200

). For each pk, we compute its convex hull, denoted by g(pk).

For a perfectly convex shape, pk ∩ g(pk) = pk, i.e. |pk|
|g(pk)| = 1. Allowing some room

for irregularities of edge and error due to digitization, we define the shape convexity

feature f56 as follows:

f56 =
1

XY

{ R∑

k=1

I
( |pk|
|g(pk)|

≥ 0.8
)
|pk|
}
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Figure 5.13. Demonstrating the shape convexity feature. Left: Original photograph.
Middle: Three largest non-background segments shown in original color. Right: Ex-
clusive regions of the convex hull generated for each segment are shown in white. The
proportion of white regions determine the convexity value.

where I(·) is the indicator function. This feature can be interpreted as the

fraction of the image covered by approximately convex-shaped homogeneous re-

gions, ignoring the insignificant image regions. This feature is demonstrated in

Fig. 5.13. Note that a critical factor here is the segmentation process, since we are

characterizing shape by segments. Often, a perfectly convex object is split into

concave or irregular parts, considerably reducing the reliability of this measure.

5.6 Feature Selection, Classification, Regression

A contribution of our work is the feature extraction process itself, since each of the

features represent interesting aspects of photography regardless of how they aid in

classification or regression. We now wish to select interesting features in order to

(1) discover features that show correlation with community-based aesthetics scores,

and (2) build a classification/regression model using a subset of strongly/weakly

relevant features such that generalization performance is near optimal. Instead

of using any regression model, we use a one-dimensional support vector machine

(SVM) [265]. SVMs are essentially powerful binary classifiers that project the

data space into higher dimensions where the two classes of points are linearly

separable. Naturally, for one-dimensional data, they can be more flexible than a

single threshold classifier.

For the 3581 images downloaded, all 56 features in F were extracted and nor-

malized to the [0, 1] range to form the experimental data. Two classes of data are

chosen, high containing samples with aesthetics scores greater than 5.8, and low

with scores less than 4.2. Note that as mentioned before, only those images that
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were rated by at least two unique members were used. The reason for choosing

classes with a gap is that pictures with close lying aesthetic scores, e.g., 5.0 and 5.1

are not likely to have any distinguishing feature, and may merely be representing

the noise in the whole peer-rating process. For all experiments we ensure equal

priors by replicating data to generate equal number of samples per class. A total of

1664 samples is thus obtained, forming the basis for our classification experiments.

We perform classification using the standard RBF Kernel (γ = 3.7, cost = 1.0)

using the LibSVM package [23]. SVM is run 20 times per feature, randomly per-

muting the data-set each time, and using a 5-fold cross-validation (5-CV). The top

15 among the 56 features in terms of model accuracy are obtained. The stability

of these single features as classifiers are also tested.

We then proceeded to build a classifier that can separate low from high. For

this, we use SVM as well as the classification and regression trees (CART) algo-

rithm, developed at Stanford and Berkeley [22]. While SVM is a powerful classifier,

one limitation is that when there are too many irrelevant features in the data, the

generalization performance tends to suffer. Hence the problem of feature selection

continues to dwell. Feature selection for classification purposes is a well-studied

topic [17], with some recent work related specifically to feature selection for SVMs.

Filter-based methods and wrapper-based methods are two broad techniques for fea-

ture selection. While the former eliminates irrelevant features before training the

classifier, the latter chooses features using the classifier itself as an integral part

of the selection process. In this work, we combine these two methods to reduce

computational complexity while obtaining features that yield good generalization

performance: (1) The top 30 features in terms of their one-dimensional SVM per-

formance methods are retained while the rest of the features are filtered out. (2)

We use forward selection, a wrapper-based approach in which we start with an

empty set of features and iteratively add one feature at a time that increases the

5-fold CV accuracy the most. We stop at 15 iterations (i.e. 15 features) and use

this set to build the SVM-based classifier.

Although SVM produced very encouraging classification results, they were hard

to interpret, except for the one-dimensional case. Classifiers that help understand

the influence of different features directly are tree-based approaches such as CART.

We used the recursive partitioning (RPART) implementation [254], developed at
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Mayo Foundation, to build a two-class classification tree model for the same set of

1664 data samples.

Finally, we perform linear regression on polynomial terms of the features values

to see if it is possible to directly predict the aesthetics scores in the 1 to 7 range

from the feature vector. The quality of regression is usually measured in terms

of the residual sum-of-squares error R2
res = 1

N−1

∑N
i=1(Yi − Ŷi)

2 where Ŷi is the

predicted value of Yi. Here Y being the aesthetics scores, in the worst case Ȳ is

chosen every time without using the regression model, yielding R2
res = σ2 (variance

of Y ). Hence, if the the independent variables explain something about Y , it must

be that Rres ≤ σ2. For this part, all 3581 samples are used, and for each feature

fi, the polynomials (fi, f 2
i , f 3

i , f
1

3

i , and f
2

3

i ) are used as independent variables.

5.7 Empirical Evaluation of Inference

For the one-dimensional SVM performed on individual features, the top 15 results

obtained in decreasing order of 5-CV accuracy are as follows: {f31, f1, f6, f15,

f9, f8, f32, f10, f55, f3, f36, f16, f54, f48, f22}. The maximum classification rate

achieved by any single feature was f31 with 59.3%. This is not surprising since

one feature is not expected to distinguish between high and low aesthetics scores,

but having accuracy greater than 54%, they act as weak classifiers and hence show

some correlation with the aesthetics scores.
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Figure 5.14. Left: Variation of 5 − CV SVM accuracy with the minimum number of
unique ratings per picture. Right: Variation of 5 − CV SVM accuracy with inter-class
gap δ.
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Coming to the SVM results, the combined filter and wrapper method for feature

selection yielded the following set of 15 features:{f31, f1, f54, f28, f43, f25, f22, f17,

f15, f20, f2, f9, f21, f23, f6}. The accuracy achieved with just these 15 features is

70.12%, with precision of detecting high class being 68.08%, and low class being

72.31%. Considering the nature of this problem, these classification results are

indeed promising. The stability of these classification results in terms of number

of ratings are then considered. Samples are chosen in such a way that each photo is

rated by at least K unique users, K varying from 1 to 8, and the 5-CV accuracy and

precision plotted, as shown in Fig. 5.14. It is observed that accuracy values show

an upward trend with increasing number of unique ratings per sample, and stabilize

somewhat when this value touches 5. This reflects on the peer-rating process - the

inherent noise in this data gets averaged out as the number of ratings increase,

converging towards a somewhat ‘fair’ score. We then experimented with how

accuracy and precision varied with the gap in aesthetics ratings between the two

classes high and low. So far we have considered ratings ≥ 5.8 as high and ≤ 4.2 as

low. In general, considering that ratings ≥ 5.0+ δ
2
, be (high) and ratings ≤ 5.0− δ

2

be (low), we have based all classification experiments on δ = 1.6. The value 5.0

is chosen as it is the median aesthetics rating over the 3581 samples. We now

vary δ while keeping all other factors constant, and compute SVM accuracy and

precision for each value. These results are plotted in Fig. 5.14. Not surprisingly,

the accuracy increases as δ increases. This is accounted by the fact that as δ

increases, so does the distinction between the two classes.

Figure 5.15 shows the CART decision tree obtained using the 56 visual features.

In the figures, the decision nodes are denoted by squares while leaf nodes are

denoted by circles. The decisions used at each split and the number of observations

which fall in each node during the decision process, are also shown in the figures.

Shaded nodes have a higher percentage of low class pictures, hence making them

low nodes, while un-shaded nodes are those where the dominating class is high.

The RPART implementation uses 5-CV to prune the tree to yield lowest risk. We

used a 5-fold cross validation scheme. With complexity parameter governing the

tree complexity set to 0.0036, the tree generated 61 splits, yielding an 85.9% model

accuracy and a modest 62.3% 5-CV accuracy. More important than the accuracy,

the tree provides us with a lot of information on how aesthetics can be related to
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Figure 5.15. The CART tree obtained on the 56 visual features (partial view).

individual features. We do not have the space to include and discuss the entire

tree. Let us discuss some interesting decision paths, in each tree, which support

our choice of features. The features denoted by IRM100 (f9), and the low DOF

indicators for S and V components, respectively (denoted by low DOF s (f54)

and low DOF v (f55) ), appear to play crucial roles in the decision process. The

expected loss at L3 and L4 are 0% and 9%, respectively. A large numeric value of

the low DOF indicators shows that the picture is focused on a central object of

interest. As discussed before, taking such pictures requires professional expertise

and hence high peer rating is not unexpected.

Finally, we report the regression results. The variance σ2 of the aesthetics

score over the 3581 samples is 0.69. With 5 polynomial terms for each of the 56,

we achieved a residual sum-of-squares R2
res = 0.5020, which is a 28% reduction

from the variance σ2. This score is not very high, but considering the challenge

involved, this does suggest that visual features are able to predict human-rated

aesthetics scores with some success. To ensure that this was actually demonstrat-

ing some correlation, we randomly permuted the aesthetics scores (breaking the

correspondence with the features) and performed the same regression. This time,

Rres is 0.65, clearly showing that the reduction in expected error was not merely

by the over-fitting of a complex model.
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5.8 Image Filtering via Aesthetics Inference

We now consider the application of aesthetics inference to real-world image man-

agement. The immense popularity of photo-sharing communities (e.g., Flickr,

Photobucket, Photo.net) and social-networking platforms (e.g., Facebook, Mys-

pace) has made it imperative to introduce novel media management capabilities,

which in turn may help to stay competitive in these crowded markets. In the case

of visual media management, areas such as content-based image classification and

retrieval [242], automatic annotation [31, 163], and image watermarking [51] for

rights management have been extensively studied. Complementing some of these

techniques, our goal is to be able to automatically assess high-level visual quality

(unlike low-level quality such as noise/quantization level), so as to facilitate quality-

based image management. Among other things, it can help perform various kinds

of image filtering, such as (a) selecting high-quality images from a collection for

browsing, for front-page display, or as representatives, (b) enhancing image search

by pushing images of higher quality up the ranks, or (c) eliminating low-quality

images under space constraints (limited Web space, mobile device, etc.) or other-

wise. Visual quality here can be based on criteria such as aesthetics (Photo.net,

see Fig. 5.16) or interestingness (Flickr), and these can be either personalized (indi-

viduals treated separately), or consensus-based (scores averaged over population).

A major deterrent to research in this direction has been the difficulty to precisely

define their characteristics, and to relate them to low-level visual features. One

way around this is to ignore philosophical/psychological aspects, and instead treat

the problem as one of data-driven statistical inferencing, similar to user preference

modeling in recommender systems [219].

As described previously in this chapter, recent work on aesthetics inference [56]

has given hope that it may be possible to empirically learn to distinguish between

images of low and high aesthetic value, especially at the extremes of the rating

scale. A key result presented in that work is as follows. Using carefully chosen

visual features followed by feature selection, a support vector machine (SVM) can

distinguish between images rated > 5.8 and < 4.2 (on a 1-7 scale) with 70% ac-

curacy and those rated ≥ 5.0 and < 5.0 with 64% accuracy, images being rated

publicly by Photo.net users. There are two key concerns in the context of applica-
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Figure 5.16. Example images from Photo.net where the consensus aesthetics score ≥ 6
(above), and ≤ 4 (below), on 1− 7.

bility of these results. (1) A 64% accuracy in being able to distinguish (≥ 5.0,< 5.0)

is not a strong-enough for real-world deployment in selecting high-quality pictures

(if ≥ 5.0 implies high-quality, that is). (2) It is unclear how a 70% accuracy on a

(> 5.8, < 4.2) question can be used to help photo management in any way. Here,

we explore the use of the same set of visual features in image filtering, and conclude

that despite the moderate classification accuracy, the extracted visual features can

help develop very usable aesthetics-related applications. The specific contributions

are: (A) Given a set of visual features known to be useful for visual quality, we

propose a new approach to exploiting them for significantly improved accuracy in

inferring quality. (B) We introduce a weighted learning procedure to account for

the trust we have in each consensus score, in the training data, and empirically

show consistent performance improvement with it. (C) We propose two new prob-

lems of interest that have direct applicability to image management in real-world

settings. Our approach produces promising solutions to these problems.

5.9 Regression and Classification Models

Let us suppose that there are D visual features known (or hypothesized) to have

correlation with visual quality (e.g., aesthetics, interestingness). An image Ik can

thus be described by a feature vector ~Xk ∈
� D , where we use the notation Xk(d)

to refer to component d of feature vector ~Xk. For clarity of understanding, let
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us assume that there exists a true measure qk of consensus on the visual quality

that is intrinsic to each Ik. Technically, we can think of this true consensus as the

asymptotic average over the entire population, i.e., qk = limQ→∞
1
Q

∑Q
i=1 qk,i, where

qk,i is the ith rating received. This essentially formalizes the notion of ‘aesthetics in

general’ presented in [56]. This measurement is expected to be useful to the average

user, while for those ‘outliers’ whose tastes differ considerably from the average, a

personalized score is more useful - a case that best motivates recommender systems

with individual user models.

In reality, it is impractical to compute this true consensus score because it

requires feedback over the entire population. Instead, items are typically scored

by a small subset of the population, and what we get from averaging over this

subset is an estimator for qk. If {sk,1, · · · , sk,nk
} is a set of scores provided by nk

unique users for Ik, then q̂k = 1
nk

∑nk

i=1 sk,i, where q̂k is an estimator of qk. In theory,

as nk →∞, q̂k → qk. Given a set of N training instances {( ~X1, q̂1), · · · , ( ~XN , q̂N)},
our goal is to learn a model that can help predict quality from the content of unseen

images.

5.9.1 Weighted Least Squares Regression

Regression is a direct attempt at learning to emulate human ratings of visual

quality, which we use here owing to the fact that it is reported in [56] to have

found some success. Here, we follow the past work by learning a least squares

linear regressor on the predictor variables Xk(1), · · · , Xk(D), where the dependent

variable is the consensus score q̂k. We introduce weights to the regression process

on account of the fact that q̂k are only estimates of the true consensus qk, with less

precise estimates being less trustable for learning tasks. From classical statistics,

we know that the standard error of mean, given by σ√
n
, decreases with increasing

sample size n. Since q̂k is a mean estimator, we compute the weights wk as a simple

increasing function of sample size nk,

wk =
nk

nk + 1
, k = 1, · · · , N (5.1)
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where limnk→∞wk = 1, wk ∈ [1
2
, 1). The corresponding parameter estimate for

squared loss is written as

~β∗ = arg min
~β

1

N

N∑

k=1

wk

(
q̂k −

(
β(0) +

D∑

d=1

β(d)Xk(d)
))2

Given a ~β∗ estimated from training data, the predicted score for an unseen image

I having feature vector X is given by

qpred = β∗(0) +
D∑

d=1

β(d)X(d) (5.2)

Because weighted regression is relatively less popular than its unweighted coun-

terpart, we briefly state an elegant and efficient linear algebraic [99] estimation

procedure, for the sake of completeness. Let us construct an N × (D + 1) matrix

X = [ ~1 ZT ] where ~1 is a N -component vector of ones, and Z = [ ~X1 · · · ~XN ].

Let ~q be a N × 1 column matrix (or vector) of the form (q̂1 · · · q̂N )T , and W is

an N ×N diagonal matrix consisting of the weights, i.e., W = diag{w1, · · · , wN}.
In the unweighted case of linear regression, the parameter estimate is given by

~β∗ = (XTX)
−1

XT~q = X†~q, where X† is the pseudoinverse in the case of linearly

independent columns. The weighted linear least squares regression parameter set,

on the other hand, is estimated as below:

~β∗ = (XTWX)
−1

XTW~q (5.3)

Letting V = diag{√w1, · · · ,
√

wN}, such that W = VTV = VVT , we can re-write

Eq. 5.3 in terms of pseudoinverse:

~β∗ = (XTWX)
−1

XTW~q (5.4)

= ((VX)T (VX))
−1

(VX)TV~q

= (VX)†V~q

This form may lead to cost benefits. Note that the weighted learning process does

not alter the inference step of Eq. 5.2.
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5.9.2 Naive Bayes’ Classification

The motivation for having a naive Bayes’ classifier was to be able to complement

the linear model with a probabilistic one, based on the hypothesis that they have

non-overlapping performance advantages. The particular way of fusing regression

and classification will become clearer shortly. For this, we assume that by some

predetermined threshold, the (consensus) visual quality scores q̂k can be mapped

to binary variables ĥk ∈ {−1, +1}. For simplification, we make a conditional

independence assumption on each feature given the class, to get the following form

of the naive Bayes’ classifier:

Pr(H | X(1), · · · , X(D)) ∝ Pr(H)
D∏

d=1

Pr(X(d) | H) (5.5)

The inference for an image Ik with features ~Xk involves a comparison of the form

ĥk = arg max
h∈{−1,+1}

Pr(H = h)

D∏

d=1

Pr
(
Xk(d) | H = h

)
(5.6)

The training process involves estimating Pr(H) and Pr(X(d)|H) for each d. The

former is estimated as follows:

Pr(H = h) =
1

N

N∑

i=1

I(ĥi = h) (5.7)

where I(·) is the indicator function. For the latter, parametric distributions are

estimated for each feature d given class. While mixture models seem appropriate

for complicated features (e.g., neither too high nor too low brightness is preferred),

here we model each of them using single component Gaussian distributions, i.e.,

X(d) | (H = h) � N (µd,h, σd,h), ∀d, h, (5.8)

where the Gaussian parameters µd,h and σd,h are the mean and std. dev. of the

feature value Xd over those training samples k that have ĥk = h. Performing

weighted parameter estimation is possible here too, although in our experiments

we restricted weighting learning to regression only.
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5.10 Selection and Elimination Algorithms

In this section, we describe the algorithms that make use of the regression and

classification models to select high-quality images and eliminate low-quality images

from image collections.

5.10.1 Selecting High-quality Pictures

Equipped with the above two methods, we are now ready to describe our approach

to selecting high-quality images. First we need a definition for ‘high-quality’. An

image Ik is considered to be visually of high-quality if its estimated consensus score,

as determined by a subset of the population, exceeds a predetermined threshold,

i.e., q̂k ≥ HIGH. Now, the task is to automatically select T high-quality images

out of a collection of N images. Clearly, this problem is no longer one of clas-

sification, but that of retrieval. The goal is to have high precision in retrieving

pictures, such that a large percentage of the T pictures selected are of high-quality.

To achieve this, we perform the following:

1. A weighted regression model (Sec. 5.9.1) is learned on the training data.

2. A naive Bayes’ classifier (Sec. 5.9.2) is learned on training data, where the

class labels ĥk are defined as

ĥk =

{
+1 if q̂k ≥ HIGH

−1 if q̂k < HIGH

3. Given an unseen set of N test images, we get predict consensus scores

{q̂1, · · · , q̂N} using the weighted regression model, which we sort in descend-

ing order.

4. Using the naive Bayes’ classifier, we start from the top of the ranklist,

selecting images for which the predicted class is +1, i.e., ĥ = +1, and
Pr(H=+1|X(1),··· ,X(D))
Pr(H=−1|X(1),··· ,X(D))

> θ, until T of them have been selected. This filter

applied to the ranked list therefore requires that only those images at the

top of the ranked list that are also classified as high-quality by the naive
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Bayes’ (and convincingly so) are allowed to pass. For our experiments, we

chose θ = 5 arbitrarily and got satisfactory results.

5.10.2 Eliminating Low-quality Pictures

Here, we first need to define ‘low-quality’. An image Ik is considered to be visually

of low-quality if its consensus score is below a threshold, i.e., q̂k ≤ LOW . Again,

the task is to automatically filter out T low-quality images out of a collection of N

images, as part of a space-saving strategy (e.g., presented to the user for deletion).

The goal is to have high precision in eliminating low-quality pictures, with the

added requirement that as few high-quality ones (defined by threshold HIGH) be

eliminated in the process as possible. Thus, we wish to eliminate as many images

having score ≤ LOW as possible, while keeping those with score ≥ HIGH low in

count. Here, steps 1 and 2 of the procedure are same as before, while steps 3 and

4 differ as follows:

1. In Step 3, instead of sorting the predicted consensus scores in descending

order, we do so in ascending order.

2. In Step 4, we start from the top of the ranklist, selecting images for which

the predicted class is -1 (not +1, as before), by a margin. This acts as as a

two-fold filter: (a) low values for the regressed score ensure preference toward

selecting low-quality pictures, and (b) a predicted class of −1 by the naive

Bayes’ classifier prevents those with HIGH scores from being eliminated.

5.11 Empirical Evaluation of Search Refinement

All experiments are performed on the same dataset obtained from Photo.net that

was used in [56], consisting of 3581 images, each rated publicly by one or more

Photo.net users on a 1−7 scale, on two parameters, (a) aesthetics, and (b) original-

ity. As before, we use the aesthetics score as a measure of quality. While individual

scores are unavailable, we do have the average scores q̂k for each image Ik, and the

no. of ratings nk given to it. The score distribution in the 1 − 7 range, along

with the distribution of the per-image number of ratings, is presented in Fig. 5.17.
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Figure 5.17. Distributions of no. of ratings (left) and scores (right) in Photo.net
dataset.

Note that the lowest average score given to an image is 3.55, and that the number

of ratings has a heavy-tailed distribution. The same 56 visual features extracted

in [56] (which include measures for brightness, contrast, depth-of-field, saturation,

shape convexity, region composition, etc.) are used here as well, but without any

feature selection being performed. Furthermore, nonlinear powers of each of these

features, namely their squares, cubes, and square-roots, are augmented with them

to get D = 224 dimensional feature vectors describing each image.

5.11.1 Selecting High-quality Pictures

Using the procedure described in Sec. 5.10.1, we perform experiments for selection

of high-quality images for different values of HIGH, ranging over 4.8− 6.0 out of

a possible 7, in intervals of 0.1. In each case, 1000 images are drawn uniformly at

random from the 3581 images for testing, and the remaining are used for training

the regressor and the classifier. The task here is to select T = 5, 10, and 20

images out of the pool of 1000 (other values of T ≤ 50 showed similar trends),

and measure the precision = #(high-quality images selected)
#(images selected)

, where the denominator is a

chosen T . We compare our approach with three baselines. First, we use only the

regressor and not the subsequent classifier (named ‘Regression only’). Next we use

an SVM, as originally used in [56], to do a (< HIGH, ≥ HIGH) classification to

get a fixed performance independent of T (named ‘SVM’), i.e., the SVM simply

classifies each test image, and therefore regardless of the number of images (T )
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Figure 5.18. Precision in selecting high-quality images, shown here for three selection
set sizes, T = 10, 20, and 30. Bottom-right: Impact of using weighted model estimation
vs. their unweighted counterparts, with HIGH fixed and T varying.

to select, performance is always the same. Finally, as a worst-case bound on

performance, we plot the precision achieved on picking any T images at random

(named ‘Random Draw’). This is also an indicator of the proportion of the 1000

test images that actually are of high-quality on an average. Each plot in Fig. 5.18

are averages over 50 random test sets.

We notice that our performance far exceeds that of the baselines, and that

combining the regressor with the naive Bayes’ in series pushes performance further,

especially for larger values of HIGH (since the naive Bayes’ classifier tends to

identify high-quality pictures more precisely). For example, when HIGH is set

to 5.5, and T = 20 images are selected, on an average 82% are of high-quality

when our approach is employed, in contrast to less than 50% using SVMs. For

lower thresholds, the accuracy exceeds 95%. In the fourth graph (bottom-right), we

note the improvement achieved by performing weighted regression instead of giving

every sample equal importance. Performed over a range of HIGH values, these
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Figure 5.19. A sample instance of T = 10 images selected by our approach, for
HIGH = 5.5. The actual consensus scores are shown in red, indicating an 80% precision
in this case.

averaged results confirm our hypothesis about the role of ‘confidence’ in consensus

modeling. For illustration, we present a sample instance of images selected by our

approach for T = 10 and HIGH = 5.5, in Fig. 5.19, along with their ground-truth

consensus scores.

5.11.2 Eliminating Low-quality Pictures

Here again, we apply the procedure presented in Sec. 5.10.2. The goal is to be able

to eliminate T images such that a large fraction of them are of low-quality (defined

by threshold LOW ) while as few as possible images of high-quality (defined by

threshold HIGH) get eliminated alongside. Experimental setup is same as the

previous case, with 50 random test sets of 1000 images each. We experimented

with various values of T ≤ 50 with consistent performance. Here we present the

cases of T = 25 and 50, fix HIGH = 5.5, while varying LOW from 3.8−5.0. Along

with the metric precision = #(low-quality images eliminated)
#(images eliminated)

, also computed in this case

is error = #(high-quality images eliminated)
#(images eliminated)

. Measurements over both these metrics, with

varying LOW threshold, and in comparison with the ‘Regression Only’, ‘SVM’,

and ‘Random Draw’, are presented in Fig. 5.20.

These results are very encouraging, as before. For example, it can be seen

that when the threshold for low-quality is set to 4.5, and 50 images are chosen

for elimination, our approach ensures ∼ 65% of them to be of low-quality, with

only ∼ 9% to be of high-quality. At higher threshold values, precision exceeds

75%, while error remains roughly the same. In contrast, the corresponding SVM
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Figure 5.20. Above: Precision in eliminating low-quality images, shown here for two
set sizes, namely T = 25 and 50. Below: The corresponding errors, made by eliminating
high-quality images in the process.

figures are 43% and 28% respectively. We also note that the performance with

using naive Bayes’ in conjunction with regression does improve performance on

both metrics, although not to the extent we see in high-quality picture selection.

While not shown here, we found similar improvements as before with using the

weighted methods over the unweighted ones.

5.12 Summary

In this chapter, we have explored the topic of data-driven inference of visual quality

or ‘aesthetic value’ of images. Given the highly subjective nature of this problem,

our focus was specifically on building data-driven models for aesthetics inference.

Owing to minimal prior art, the topic is first explored in great detail, presenting

definitions, scope, problems of interest, and datasets available for training. Then,

methods for extracting a number of high-level visual features, presumed to have
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correlation with aesthetics, are presented. Through feature selection and machine

learning, an aesthetics inference model is trained and found to perform moderately

on real-world data. The aesthetics-correlated visual features are then used in an

image filtering application involving selecting and eliminating images at the high

and low extremes of the aesthetics scale respectively, using a novel statistical model.

Experimentally, we find this approach to work well in both forms of visual quality

based image filtering. The proposed model is thus a favorable candidate for the

task of image search result filtering.



Chapter 6
Exploiting the Semantic Gap:

Designing CAPTCHAs Using Image

Search Metrics

Robust image understanding remains an open problem. The gap between hu-

man and computational ability to recognizing visual content has been termed by

Smeulders et al. [242] as the semantic gap. A key area of research that would

greatly benefit from the narrowing of this gap is content-based image retrieval

(CBIR). Over more than a decade, attempts have been made to build tools and

systems that can retrieve images (from repositories) that are semantically similar

to query images, which have enjoyed moderate success [58, 242]. While the in-

ability to bridge the semantic gap highlights the limitations of the state-of-the-art

in image content analysis, we see in it an opportunity for system security. This,

and any task that humans are better at performing than the best computational

means, can be treated as an ‘automated Turing test’ [274, 261] that tells humans

and computers apart. Typically referred to as HIP (Human Interactive Proof)

or CAPTCHA (Completely Automated Public Turing test to tell Computers and

Humans Apart) [25], they help reduce e-mail spam, stop automated blog and fo-

rum responses, save resources, and prevent denial-of-service (DoS) attacks on Web

servers [194], among others. In general, DoS attacks involve generating a large

number of automated (machine) requests to one or more network devices (e.g.,

servers) for resources in some form, with the goal of overwhelming them and pre-
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(a) (b)

(c) (d)

Figure 6.1. Sample CAPTCHAs proposed or in real-world use. (a)-(b) Text-based
CAPTCHAs in public use. (c) Image-based CAPTCHA proposed by CMU’s Captcha
Project. User is asked to choose an appropriate label from a list. (d) Asirra [76] presents
pictures of cats and dogs and asks users to select all the cats.

venting legitimate (human) users from getting their service. In a distributed DoS,

multiple machines are compromised and used for coordinated automated attacks,

making it hard to detect and block the attack sources. To prevent such forms

of attacks and save resources, the servers or other network devices can require

CAPTCHA solutions to accompany each request, thus forcing human interven-

tion, and hence, in the very least, reducing the intensity of the attacks. Because

CAPTCHAs can potentially play a very critical role in Web security, it is impera-

tive that the design and implementation of CAPTCHAs be relatively foolproof.

There has been sizable research on designing as well as breaking CAPTCHAs.

In both these efforts, computing research stands to benefit. A better CAPTCHA

design means greater security for computing systems, and the breaking of an ex-

isting CAPTCHA usually means the advancement of artificial intelligence (AI).

While text-based CAPTCHAs have been traditionally used in real-world applica-

tions (Yahoo! Mail Sign up, PayPal Sign up, Ticketmaster search, Blogger Com-

ment posting, etc.), their vulnerability has been repeatedly shown by computer

vision researchers [195, 252, 38, 196], reporting over 90% success rate. Among the

earliest commercial ones, the Yahoo! CAPTCHA has also been reportedly com-

promised, with a success rate of 35% [241], allowing e-mail accounts to be opened

automatically, and encouraging e-mail spam.



181

In principle, there exist many hard AI problems that can replace text-based

CAPTCHAs, but in order to have general appeal and accessibility, recognition of

image content has been an oft-suggested alternative [274, 46, 61, 76, 226]. While

automatic image recognition is usually considered to be a much harder problem

than text recognition (which is a reason for it to be suggested as an alternative

to text CAPTCHAs), it has also enjoyed moderate success as part of computer

vision research. This implies that a straightforward replacement of text with im-

ages may subject it to similar risks of being ‘broken’ by image recognition tech-

niques. Techniques such as near-duplicate image matching [139], content-based

image retrieval [242], and real-time automatic image annotation [166] are all po-

tential attack tools for an adversary. One approach that can potentially make it

harder for automated attack while maintaining recognizability by humans is sys-

tematic distortion. A brief mention of the use of distortions in the context of image

CAPTCHAs has been made in the literature [46], but this has not been followed

up by any study or implementation. Furthermore, while there have been ample

studies on the algorithmic ability to handle noisy signals (occlusion, low light, clut-

ter, noise), most often to test robustness of recognition methods, their behavior

under strong artificial distortions has been rarely studied systematically.

In this work, we explore the use of systematic image distortion in designing

CAPTCHAs, for inclusion in our experimental system called IMAGINATION. We

compare human and machine recognizability of images under distortion based on

extensive user studies and image matching algorithms respectively. The criteria

for a distortion to be eligible for CAPTCHA design are that when applied, they

1. make it difficult for algorithmic recognition, and

2. have minor effect on recognizability by humans.

Formally, let H denote a representative set of humans, and let M denote one

particular algorithm of demonstrated image recognition capability. We introduce

a recognizability function ρX(I) to indicate whether image I has been correctly

recognized by X or not. Thus, ρH(I) and ρM(I) are human and machine recogniz-

abilities respectively, and we refer to |ρH(I)−ρM(I)| as the recognizability gap with

respect to image I. This image can be visually distorted to varying degrees. We
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define a distortion function δy(·) that can be applied to a natural image, the de-

gree of distortion being abstractly represented by parameter y. This study focuses

on analyzing (a) recognizability, and (b) recognizability gap, of distorted images

δy(I), over a large number of natural images. The following are of interest:

• Current state-of-the-art in image recognition typically test and report results

on undistorted natural images, and on minor distortions. The ‘breaking’ of

an image CAPTCHA, in the absence of distortion, is therefore roughly as

likely as the performance of these image recognition techniques.

• On application of a distortion, the image recognition performance is expected

to degrade. There has been no comprehensive study on the effect of various

artificial distortions on image recognizability.

• Distortion also affects human recognizability of images. It is safe to assume,

though, that humans are relatively more resilient to distortion; they can

‘see through’ clutter and fill in the missing pieces, owing to their power of

imagination.

• In CAPTCHA design, the goal is to evade recognition by machines while

being easily recognizable by humans. It is therefore important to be able to

figure out the types and strengths of distortion on images that keep human

recognizability high while significantly affecting machine recognizability.

While the primary aim of this work is the systematic design of a security mecha-

nism, the results from the study (See, e.g., Figs. 6.7, 6.8, 6.9, 6.10, and Table 6.3)

also reveal to us some of the shortcomings of image matching algorithms, i.e., how

the application of certain distortions makes it difficult for even state-of-the-art

image matching methods to pair up distorted images with their originals. Fur-

thermore, through large-scale user studies, we are also made aware of the kinds

of distortions that make image recognition difficult for humans. These peripheral

observations may find use in other research domains.

A Note on CAPTCHA-based Security: Besides specific attempts to break

CAPTCHAs by solving hard AI problems, in the recent times, adversaries have

used a method which greatly undermines their strength: using humans to solve

them. As reported recently [104], humans are being used to solve them, either in
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a well-organized manner commercially (in low labor cost regions), or by the use of

games and other methods whereby humans are unaware that their responses are

being used for malicious purposes. These attempts make it futile to create harder

AI problems, because in principle, a CAPTCHA should be solvable by virtually all

humans, regardless of their intent. Nonetheless, CAPTCHAs are and will continue

to remain deployed until alternate, unbreakable, human identity verification meth-

ods become practical. Till then, they should, at the very least, serve to impede

the intensity of human-guided breaking of CAPTCHAs. Our work continues the

mission of designing CAPTCHAs resilient to automated attacks. A key strategy

involved in preventing automated attacks is to incorporate random distortions as

much as possible, effectively making the space of CAPTCHA problems infinite,

thus rendering any attempt to build a dictionary of answers infeasible. Our ap-

proach is based on such a strategy.

The rest of this chapter is arranged as follows. In Sec. 6.1, we discuss the metrics

for measurement of recognizability under distortion for both humans and machines,

and potential candidate distortions that can affect recognizability. In Sec. 6.2,

we describe our experimental system IMAGINATION, which we then compare

comprehensively with existing CAPTCHAs, in Sec. 6.3. Experimental results on

the effect of distortions on human and machine recognizability are presented in

Sec. 6.4. We conclude in Sec. 6.5.

6.1 Image Recognizability Under Distortion

Let us assume that we have a collection of natural images, each with a dominant

subject, such that given a set of options (say 15), choosing a label is unambigu-

ous. We first define machine/human recognizability concretely, and then discuss

distortions that can potentially satisfy the CAPTCHA requirements.

6.1.1 Algorithmic Recognizability

Algorithms that attempt to perform image recognition under distortion can be

viewed from two different angles here. First, they can be thought of as methods

that potential adversaries may employ in order to break image CAPTCHAs. Sec-
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ond, they can be considered as intelligent vision systems. Because the images in

question can be widely varying and be part of a large image repository, content-

based image retrieval (CBIR) systems [242] seem apt. Essentially a memory-based

method of attack, the assumption is that the adversary has access to the original

(undistorted) images (which happens to be a requirement [25] of CAPTCHAs)

for matching with the distorted image presented. While our experiments focus

on image matching algorithms, other types of algorithms also seem plausible at-

tack strategies. Near-duplicate detection [139], which focus on finding marginally

modified/distorted copyrighted images, also seems to be a good choice here. This

is part of our future work. Automatic image annotation and scene recognition

techniques [58] also have potential, but given the current state-of-the-art, these

methods are very unlikely to do better than direct image-to-image matching.

Recognition of a distorted image δy(I) is thus achieved as follows: Let the

adversary have at hand the entire database X of possible images, i.e., ∀I, I ∈ X .

We can think of the image retrieval algorithm as a function that takes in a pair of

images and produces a distance measure g(I1, I2) (which hopefully correlates well

with their semantic distance). Define a rank function

rankg(I1, I2,X ) = Rank of I1 w.r.t. I2 in X using g(·, ·) (6.1)

We relax the criteria for machine recognizability, treating image I1 as recognizable

if rankg(I1, I2,X ) is within the top K ranks. This is done since the adversary,

being a machine, can iterate over a small set K of images quickly to produce a

successful attack. Thus, we define average machine recognizability under distortion

δy(·), where machine in this case is an image retrieval system modeled as g(·, ·), as

ρg(δy) =
1

|X |
∑

I∈X
I
(
rankg(I, δy(I),X ) ≤ K

)
(6.2)

where I(·) is the indicator function. For our experiments, we consider a very sim-

ple image similarity metric, and two well-known and widely used image retrieval

systems that use different low-level image representation and compute pairwise

image distance in different ways. First, we use the simplest possible image simi-

larity metric; the average of the norm of the pixel-wise difference (PWD) between
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the two images. Given two images, the larger image is first scaled to the smaller

one to match its dimensions (In our experiments, all test images are of the same

dimensions). If the two images are I and I ′, then

pwd(I, I ′) =
1

|I|
∑

x,y

∑

c∈{R,G,B}

(
Ic(x, y)− I ′c(x, y)

)2
(6.3)

where |I| here denotes the total number of pixels in the image. This measure

clearly lacks robustness, and is expected to be sensitive even to very small dis-

tortions. Second, we employ the Earth Mover’s Distance (EMD) [221] (which

is essentially the earlier proposed Mallow’s Distance [181]) based on global color

features and a robust, true distance metric. Finally, we employ the more recent

IRM distance which forms the backbone of the SIMPLIcity system [278]. This

distance performs region segmentation and takes into consideration color, texture,

and shape of regions, going on to compute a robust distance between a variable

number of region descriptors across a pair of images. In these two cases, color

similarity is computed in the CIE-LAB and CIE-LUV spaces respectively, thus

adding to their robustness to chromatic distortions. Both methods, while being

fairly distinct, have been independently shown to yield good retrieval performance

under distortion. The generic distance function g(·, ·) is specifically denoted here

as pwd(·, ·), emd(·, ·), and irm(·, ·) respectively. Thus, under distortion δy(·), we

denote their average recognizability by ρpwd(δy), ρemd(δy), and ρirm(δy) respectively.

6.1.2 Human Recognizability

We measure human recognizability under distortion using a controlled user study.

An image I is sampled from X , subjected to distortion δy(·), and then presented

to a user, along with a set of 15 word choices, one of which is unambiguously an

appropriate label. The user choice, made from the word list, is recorded alongside

the particular image category and distortion type. Since it is difficult to get user

responses for each distortion type over all images X , we measure the average

recognizability for a given distortion using the following. If U(δy) is the set of all
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images presented to users subjected to δy(·),

ρH(δy) =
1

|U(δy)|
∑

I∈U(δy)

I
(
I is correctly recognized

)
(6.4)

where I is the indicator function. The implicit assumptions made here, under

which the term ρH(δy) is comparable to ρemd(δy) or ρirm(δy) is that (a) all users

independently assess recognizability of a distorted image (since they are presented

privately, one at a time), and (b) with sufficient number of responses, the average

recognizability measures converge to their true value.

Assessing Recognizability with User Study: The user study we use in

order to measure what we term as the average human recognizability ρH(δy) under

distortion δy, is only one of many ways to assess the ability of humans to recog-

nize images in clutter. This metric is designed specifically to assess the usability

of CAPTCHAs, and may not reflect on general human vision. Furthermore, the

study simply asks users to choose one appropriate image label from a list of 15

words, and recognizability is measured as the fraction of times the various users

made the correct choice. While correct selection may mean that the user recog-

nized the object in the image correctly, it could also mean that it was the only

choice perceived to be correct, by elimination of choices (i.e., best among many

poor matches), or even a random draw from a reduced set of potential matches.

Furthermore, using the averaged responses over multiple users could mean that

the CAPTCHA may still be unusable by some fraction of the population. While

it is very difficult to assess true recognizability, our metric serves the purpose it is

used for: the ability of users to pick one correct label from a list of choices, given a

distorted image, and hence we use these averaged values in the CAPTCHA design.

Furthermore, the user study consists of roughly the same number of responses from

over 250 random users, making the average recognizability metric fairly represen-

tative. Later in Sec. 6.4, we will see that there is sufficient room for relaxing the

intensity of distortions so as to ensure high recognizability for most users, without

compromising on security.
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Table 6.1. Some features and distortions that affect their extraction
Feature Affected by Not Affected by

Local Color Quantization, Dither-
ing, Luminance, Noise

Cut/rescale

Color Histogram Luminance, Noise,
Cut/rescale

Quantization, Dithering

Texture Quantization, Dither-
ing, Noise

Luminance, Cut/rescale

Edges Noise, Dithering Quantization, Lumi-
nance, Cut/rescale

Segmentation & Shape Dithering, Noise,
Quantization

Luminance, Cut/rescale

Interest Points Noise, Dithering,
Quantization

Luminance, Cut/rescale

6.1.3 Candidate Distortions

We look at distortion candidates that are relevant in designing image CAPTCHAs.

With the exception of the requirement that the distortion should obfuscate ma-

chine vision more than human vision, the space of possible distortions δy(·) is

unlimited. Any choice of distortion gets further support if simple filtering or other

pre-processing steps are ineffective in undoing the distortion. Furthermore, we

avoid non-linear transformations on the images so as to retain basic shape in-

formation, which can severely affect human recognizability. For the same reason

we do not use other images or templates to distort an image. Pseudo-randomly

generated distortions are particularly useful here, as with text CAPTCHAs.

For the purpose of making it harder for machine recognition to undo the effect of

distortion, we need to also consider the approaches taken in computer vision for this

task. In the literature, the fundamental step in generic recognition tasks has been

low-level feature extraction from the images [242, 58]. In fact, this is the only part

of the recognition process that we have the power to affect. The subsequent steps

typically involve deriving mid to high level features representations from them,

performing pair-wise image feature matching, matching them to learned models,

etc. Because of their dependence on low-level features, we expect them to weaken

or fail when feature extraction is negatively affected. Some of the fundamental

features and the corresponding distortions (describe below) that typically affect
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their extraction, are presented in Table 6.1. For each feature, we consider only well-

established extraction methodologies (e.g., SIFT [172] for interest point detection)

when deciding which distortions affect them.

We formalize the notion of image distortions as follows. Suppose we have a set

of fundamental or ‘atomic’ distortion types (denoted δ), e.g., adjustment of image

luminance, quantization of colors, dithering, or addition of noise. These distortions

are parameterized (parameter denoted y), so a particularly distortion is completely

specified by (type, parameter) tuples, denoted δy. The set of possible distortions

∆, which is countably infinite if parameter y is discrete, is formalized as follows:

• Atomic distortions {Quantizey(·), Dithery(·), · · · } ∈ ∆.

• If δy(·) and δ′y(·) ∈ ∆, then δy(δ
′
y(·)) and δ′y(δy(·)) ∈ ∆.

Put in plain words, any combination of an atomic distortion (applied in a spe-

cific order) is a new distortion. Here, we list the atomic distortions (and their

parametrization) that we considered for this study.

• Luminance: Being one of the fundamental global properties of images, we

seek to adjust it. Increasing and decreasing ambient light within an image

is expected to affect recognizability. A scale factor parameter controls this

in the following way. The RGB components of each pixel are scaled by scale

factor, such that the average luminance over the entire image is also scaled

by this scale factor. Too much or too little brightness are both expected to

affected recognizability.

• Color Quantization: Instead of allowing the full color range, we quan-

tize the color space for image representation. For each image, we transform

pixels from RGB to CIE-LUV color space. The resultant color points, rep-

resented in
� 3 space, are subject to k-means clustering with k-center initial-

ization [124]. A parameter controls the number of color clusters generated

by the k-means algorithm. All colors are then mapped to this reduced set

of colors. A lower number of color clusters translates to loss of information

and hence lower recognizability.

• Dithering: Similar to half-toning of the printing industry, color dithering

is a digital equivalent that uses a few colors to produce the illusion of color
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depth. This is a particularly attractive distortion method here, since it af-

fects low-level feature extraction (on which machine recognition is dependent)

while having, by design, minimal effect on human vision. Straightforward ap-

plication of dithering is, however, ineffective for this purpose since a simple

mean filter can restore much of the original image. Instead, we randomly

partition the image in the following two ways:

– Multiple random orthogonal partitions.

– Image segments, generated using k-means clustering with k-center ini-

tialization on color, followed by connected component labeling.

In either case, for each such partition, we randomly select y colors (being the

parameter for this distortion) and use them to dither that region. This leaves

a segment-wise dithering effect on the image, which is difficult to undo. We

expect automatic image segmentation to be particularly affected. Distortion

tends to have a more severe effect on recognizability at lower values of y.

• Cutting and Re-scaling: For machine recognition methods that rely on

pixel-to-pixel correspondence based matching, scaling and translation helps

making them ineffective. We simply take a portion of one of the four sides

of the image, cut out between 10− 20% from the edge (chosen at random),

and re-scale the remainder to bring it back to the original image dimensions.

This is rarely disruptive to human recognition, since items of interest occupy

the central region in our image set. On the other hand, it breaks the pixel

correspondence. Which side to cut is also selected at random.

• Line and Curve Noise: Addition of pixel-wide noise to images is typically

reversible by median filtering, unless very large quantities are added, in which

case human recognizability also drops. Instead, we add stronger noise ele-

ments on to the image, at random. In particular, thick lines, sinusoids, and

higher-order curves are added. Technically, we do not set the color of these

lines and curves to zero; instead, to make detection and removal harder, we

reduce the RGB components of each such line or curve by a randomly drawn

factor, giving the illusion of being dark but not necessarily zero. The density

of noisy lines and curves are controlled by parameter y. Lines and sinusoids
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are generated orthogonal to each axis, spaced by density parameter y. For

higher order curves, y specifies the number of them to be added, each added

at random positions and orientations.

These distortions are by no means exhaustive, as mentioned before. However, they

are hand-picked to be representative of distortions that are potentially good can-

didates. We experimented with each of them individually, and their simultaneous

application on images to produce composite distortions. None of the atomic distor-

tions by themselves yielded results promising enough to satisfy the requirements.

Hence composite distortions were the only way out. We give specific details of the

composite distortions that proved effective for CAPTCHA design, in the results

section (Sec. 6.4).

6.2 Experimental System: IMAGINATION
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Figure 6.2. Architecture of the IMAGINATION system. The circled ‘R’ components
represent randomizations.

So as to put the implications of the distortion experiments into perspective, we

first briefly describe our experimental system IMAGINATION1 (IMAge Generation

1A working version of IMAGINATION is at http://alipr.com/captcha/.
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for INternet AuthenticaTION). The nomenclature is inspired by the fact that the

system’s success inherently depends on the imagination power of humans, to help

them ‘see through’ distortion and fill in the ‘gaps’ introduced by distortion.

The overall system architecture of our system is shown in Fig. 6.2. Assume

the availability of an image repository R, each labeled with an appropriate word,

and an orthogonal partition generator that randomly breaks up a rectangle of a

given dimension into 8 partitions. The system generates a tiled image, dithers

it to make automatic boundary detection hard, and asks the user to select near

the center of one of the images. This is the click step. On success, an image is

randomly sampled, distorted by one of four methods and appropriate parameteri-

zations (discussed in detail in Sec. 6.4), and presented to the user along with a list

of word choices, for labeling. This is the annotation step. These two steps are

detailed below:

• Click: A single image is created on-the-fly by sampling 8 images from R
and tiling them according to a randomly generated orthogonal partition.

This image is then similarly partitioned twice over. Each time, and for each

partition, 18 colors are chosen at random from the RGB space and are used

to dither that partition using the two-stage Floyd-Steinberg error-diffusion

algorithm [89]. The two rounds of dithering are employed to ensure that

there is increased ambiguity in image borders (more candidate ‘edges’), and

to make it much more difficult to infer the original layout. An example of

such an image is shown in Fig. 6.3. What the user needs to do is select near

the physical center of any one of the 8 images. Upon successfully clicking

within a tolerance radius r of one of the 8 image centers, the user is allowed

to proceed. Otherwise, authentication is considered failed.

• Annotate: Here, an image is sampled fromR, a distortion type and strength

is chosen (from among those that satisfy the requirements - we find this out

experimentally, as described in Sec. 6.4), applied to the image and presented

to the user along with an unambiguous choice of 15 words (generated au-

tomatically). A sample screenshot is presented in Fig. 6.4. If the user fails

in image recognition, authentication is immediately considered failed and

re-start from step 1 is necessary.
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These two click-annotate steps are repeated once more for added security. The

convenience of this interface lies in the fact that no typing is necessary. Authenti-

cation is completed using essentially four mouse clicks. The word choices can be

translated automatically to other languages if needed.

Word Choice Generator: The word choice generator creates an unambigu-

ous list of 15 words, inclusive of the correct label, in a very simple manner. For

this, we make use of a WordNet-based [190] word similarity measure proposed by

Leacock and Chodorow [153]. The 14 incorrect choices are generated by sampling

from the word pool, avoiding any one that is too similar semantically (determined

by a threshold on similarity) to the correct label. A more elaborate strategy was

proposed in [61], but we found that for limited pools of words, this simpler strategy

was equally effective.

Orthogonal Partition Generator: Optimal rectangle packing (within a

larger rectangle), with minimum possible waste of space, is an NP-complete prob-

lem. Approximate solutions to this problem have been attempted before, such as

in recent work of R.E. Korf [147] However, waste of space is not an issue for us,

nor are rectangles to pack rigid, i.e., linear stretching is allowed. Our approach is

as follows.

The full rectangular area is first partitioned vertically or horizontally (chosen

randomly) into two equal rectangles. The sub-rectangles so formed are further

partitioned recursively, strictly alternating between horizontal and vertical. The

point of partition is sampled uniformly at random along a given length. We stop

when the required number of sub-rectangles (8 in our experiments) are formed. In

Appendix B, we explain in greater detail this process of generating partitions. It is

important that the adversary be unable to take advantage of any non-uniformity

in the way the partitions are generated. In other words, the center coordinates

of sub-rectangles so formed should be drawn from a jointly uniform distribution,

such that within the plausible region that an image center may lie, every point is

equally probable. In Appendix B, we show that the way we generate the partitions

guarantees this uniformity.
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Figure 6.3. Screenshot of the Click step of authentication in the IMAGINATION sys-
tem. The tiled image is randomly partitioned orthogonally and dithered using different
color sets, to make it harder for automated identification of the image boundaries. The
user must click near the center of one of the images to get past this step.

Figure 6.4. Two screenshots of the Annotate step in the IMAGINATION system,
where a distorted image is presented, and the user must select an appropriate label from
a list of choices.

6.2.1 Vulnerability of ‘Click’ Stage to Attack

In the experiments (Sec. 6.4), we primarily analyze vulnerability of the ‘Annotate’

stage to automatic image recognition. If the adversary has full access to the image
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dataset, she should be able to use brute force to align one of the eight images

within the tiled image, and determine its center. However, this will be an extremely

expensive operation.

For an attack endeavor to be successful, it is essential to be able to find the

corner coordinates of one of the 8 images. Exact match with an image in the

database is made challenging by the following factors:

• After tiling the images, the full image is re-partitioned and dithered twice

(described previously), fragmenting the color composition of each image.

• The images are scaled to fit the generated partitions, not maintaining aspect

ratio.

Because partial matches do not reveal the corner coordinates, the only way to

get at them is to do a brute-force search over the tiled image, at various scales.

This is still subject to the fact that given a perfect alignment, there exists an

image similarity metric, which despite the dithering, decisively reveals the match.

To get a pessimistic estimate of the threat (from the designer point of view),

let us assume the adversary does have such a metric. Let us consider a tiled

image of size 800 × 600, and that the adversary is attempting to match with

one of the 8 images whose top-left corner coincides with the tiled image (Φ111

in Appendix B). Its bottom-right corner could be placed anywhere from (0, 0)

to (X/2, Y ), which in this case is (400, 600). Again, assume that the adversary

can skip 5 pixels in each dimension without missing the exact match. In our

database, there are 1050 images. The number of image matches to be attempted

is 400/5 × 600/5 × 1050 = 10080000. Assuming that the matching metric takes

100µs for each image pair, it will take 1008 seconds, or about 17 minutes, to find

one pair of corners.

While this analysis clearly indicates that the brute-force image matching ap-

proach to automatically solving the ‘Click’ stage is infeasible, there are some

caveats with respect to commercial implementations and actual attempts at break-

ing them. First, the number of images in the database should be far more than

1050. Second, given the heavy multi-stage distortion applied to the tiled image,

a metric for image matching may not always reveal the perfect alignment posi-

tions. Third, a more robust image matching algorithm may be necessary, which is
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likely to take more than 100µs to process, which would mean that attack in this

manner will be more expensive than estimated here. On the other hand, more ro-

bust methods used in subimage matching [139] may be able to significantly reduce

brute-force search. However, such methods are only robust to minimal distortions

and limited, aspect-ratio-preserving rescaling of images.

6.2.2 Overall Success Rate of Random Attack

The size of the tiled image in the click stage is fixed at 800 × 600. The choice

of the tolerance radius r is an important trade-off between ease of use and threat

of random attacks. In Sec. 6.4, we empirically show the impact of this choice on

users. For now, let us assume that r = 25 is a reasonable choice, which corresponds

very roughly to one-tenth the width of each contained image. Assuming that we

are able to produce dithering and distortions that make it no easier to attack than

by random guess, the success rate is approximately ( 8πr2

800×600
1
15

)
2

(see Appendix B),

or about 1 in 210,312. which can be considered quite costly for opening one e-mail

account, for example. The tiled image, the word choices, and the final distorted

image together take about 1 second to generate. For faster processing, a large set

of distorted images over varied parameter settings can be pre-generated.

6.3 Comparison with Existing CAPTCHAs

Before quantifying the efficacy of the click-annotate steps of the proposed IMAG-

INATION system, we draw qualitative comparison with existing CAPTCHA sys-

tems, both in public-domain existence and proposed in research publications. Re-

iterating that their purpose is to authenticate users as human without being dis-

ruptive or time-consuming, the basis for comparison among CAPTCHAs broadly

includes (a) vulnerability to attacks, and (b) user-friendliness. Vulnerability, lead-

ing to the failure of such systems, can be due to one of the following:

1. The AI problem posed is fundamentally solved;

2. Use of cheap labor to solve the problem; and

3. Problematic implementation.
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While (3) can be avoided by foolproof design and rigorous testing, and (2) cannot

be avoided in principle, neither of them depend on the nature of the CAPTCHA.

Our comparison, therefore, focuses on (1) which is the availability of tools to solve

the AI problem posed. User-friendliness of such systems can be attributed to the

following characteristics:

1. Time taken to solve a problem;

2. Chances of human failure;

3. Culture/language/educational bias; and

4. Accessibility (blind, deaf).

In the case of user-friendliness of a CAPTCHA, all these factors are important,

so we consider each of them in the ensuing comparison. In order to make the

comparisons concise, we group CAPTCHAs into broad classes, as follows:

• Text based: Text characters, typically in English, distorted in various ways

(Fig. 6.1.a).

• Generic image based: Images of easily recognizable objects, shown to be

labeled (Fig. 6.1.c).

• Speciality image based: Image classes easily distinguished by humans,

hard for machines (Fig. 6.1.d).

• Knowledge based: Questions in a language, which require ‘common sense’

responses.

• Audio based: For people with vision problems, audio clips are presented

for recognition.

Our IMAGINATION system falls roughly within the category of ‘generic image

based’, but with some vital differences. In Table 6.2, we compare it with the various

classes of CAPTCHAs. We observe that for a majority of factors, our system is

favorable compared to the rest. Furthermore, our system has so much randomness

that it is not possible to encounter same or similar problems repeatedly, ruling out

‘answer collection’ as an attack strategy. Note that blindness poses a challenge to
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Table 6.2. Qualitative comparison of our system with other CAPTCHAs
CAPTCHA
Classes:

Text based Generic
image
based

Speciality
image
based

Knowledge
based

Our Sys-
tem

Examples EZ-Gimpy ESP-
PIX [25]

Asirra [76],
ARTiFA-
CIAL [226]

NoSpam!
[270]

-

Automated
Solutions

Yes - [195,
196, 252]

Yes - exact
or approx.
match [278,
58, 242],
Automatic
Annota-
tion [166]

Yes -
Asirra [98,
86]

Likely Unlikely (by
design)

Randomness Moderate Low Moderate Moderate High
(multi-stage)

Adversary
advantage
with dataset
access

Word dic-
tionary
to prune
guesses -
[196, 195]

Exact or ap-
prox. match
with image
collection

Exact match
- speciality
DB like
Petfinder
[227]

Common-
sense
datasets, e.g.
Cyc [154]
helps answer
questions

Unlikely
(tested
assuming
dataset is
available)

Input
modality

Keyboard Mouse Mouse Keyboard Mouse

Time taken
to solve

Quick Quick Moderate Quick Quick

Chances of
human fail-
ure

Medium
(distortion-
attack
tradeoff)

Low (no dis-
tortion)

Medium
(distortion-
attack
tradeoff)

High
(knowledge-
dependent)

Medium
(distortion-
attack
tradeoff)

Language
bias

Medium
(must recog-
nize letters)

Low (via
automatic
translations)

Low High (must
comprehend
sentences)

Low (via
automatic
translations)

Educational
bias

Low Low Low High
(knowledge-
dependent)

Low

all visual CAPTCHAs. While the ‘audio based’ systems primarily serve to solve

this issue, they are somewhat orthogonal in design, and hence are not compared. In

the following sections, we also make a more detailed comparison of IMAGINATION

with text and image based CAPTCHAs.



198

6.3.1 Comparison with Text-based CAPTCHAs

Text-based systems, such as the ones shown in Fig. 6.1 a. and b., remain ar-

guably the most widely deployed forms of CAPTCHAs. The AI challenge involved

is essentially optical character recognition (OCR), with the additional challenge

that the characters are randomly distorted. Thanks to years of research in OCR,

hand-writing recognition, and computer vision, a number of research articles, such

as [195, 196, 252], have shown that such CAPTCHAs can be solved or ‘broken’,

with reportedly over 90% success rate. This is a key motivation for exploring al-

ternate paradigms. The AI challenge posed by our IMAGINATION system is that

of image recognition, which is arguably [274] a much harder problem to solve than

OCR. Therefore, in principle, IMAGINATION is likely to be more resilient to auto-

mated attacks. Furthermore, text-based CAPTCHAs require typing of letters in a

given language, say English, and its internationalization may require considerable

effort which includes regenerating the CAPTCHA images. With IMAGINATION,

the ‘click’ stage is language-independent, and for the ‘annotate’ stage, any stan-

dard language translator software can map the options from English to another

language.

6.3.2 Comparison with Other Image-based CAPTCHAs

Within the paradigm of image-based CAPTCHAs, there are distinct examples,

such as simple image recognition CAPTCHAs [46] which present users with undis-

torted generic images to be labeled using the provided word lists, Asirra [76],

which present images of 12 cats and dogs and users are required to identify the

cats among them, and ARTiFACIAL [226] which generates facial images and asks

users to pinpoint facial features in them. Problems with presenting undistorted

images, or arbitrarily distorted images, in these systems, are

• It is a security requirement of CAPTCHA systems to make data publicly

available, in this case the set of labeled images used. Given this, a straight-

forward pixel-by-pixel matching algorithm should be sufficient to answer the

image labeling question in such CAPTCHAs.

• If the dataset is indeed not made available, even then there is a problem.
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Real-time automatic image annotation systems such as Alipr [166], or other

object recognition systems [58, 242], may be able to tag images at a moder-

ate level of accuracy. This level will then translate into the success rate of

attacks, if they are used by the adversary. For the more specialized image

CAPTCHAs like Asirra, work on cat detection [86, 98] can go a long way in

undermining their effectiveness.

• In case the images are distorted arbitrarily, approximate matching algo-

rithms [278, 58] may be sufficient to match them to their originals, and

hence obtain the results.

Our proposed IMAGINATION system has the advantage of posing a hard AI prob-

lem (image recognition) while avoiding the pitfalls of the other image recognition

based systems. Distortions are applied so that presented images cannot be matched

exactly to the image dataset, and these distortions are generated in a controlled

manner such that approximate matching methods cannot be successfully applied.

While researchers in computer vision have had success in image recognition for

specific images classes, such as cats [86], recognition of generic image classes is

considered a challenging open problem that is unlikely to be solved in the near

future. Because our system works with an unrestricted range of image categories,

the threat of this AI problem getting solved sometime soon is extremely low.

6.4 Experimental Results

Large scale experiments were conducted using our publicly available IMAGINA-

TION system2, as well as our internal testbed. We obtained empirical results for

both the click and the annotate steps, based on actual usage. We describe the

setup and results below.

6.4.1 Stage 1: Click

The main variable component of this stage is the choice of r, the radius of tolerance

around each image center that is considered a valid click. We therefore wanted to

2http://alipr.com/captcha/
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see whether valid human users were able to click near the geometric centers or not,

and if so, how near or far they clicked.
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Figure 6.5. Plot of distribution of distances of user clicks from the nearest image centers
within the composite images. This distribution (26, 152 points), plotted in base-10 log
scale, shows that a majority of the clicks are within a short distance of a center.

For this, we used the click data obtained from visitors to our public demo.

Since there was evidence that a fraction of users attempted automated attacks on

the system by randomly generating coordinates and trying them out, we had to

denoise the data such that the majority of the clicks were genuine attempts at

succeeding in the task. To achieve this, we randomly picked a single click data for

each unique IP address. This way, multiple automated clicks from one machine

will have been eliminated from consideration. After denoising the data, we had

26, 152 data points corresponding to as many unique IP addresses.

The distribution of the distance of the human clicks from their nearest image

centers is shown in Fig. 6.5. We see that a majority of the clicks are in the vicinity of

a valid image center, adding to the confidence that this step of the CAPTCHA is a

reasonable one for humans. In order to choose a tolerance radius r, useful reference

graphs are those plotted in Fig. 6.6. Here we see the empirical distribution of

success rates over this set of user clicks, as r is varied. Assuming an attack strategy
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Figure 6.6. Variation of success rates by human (above) and automated randomly
sampled clicks (below) with varying tolerance radius r. This graph helps to choose r
given a desired trade-off between human ease of use and insulation from attacks.

that involves uniformly sampling at random a pair of coordinates to artificially

click at, its success rates are only dependent on r, and these are plotted below.

Together, these two plots help determine a value that gives desirable security as

well as usability. We can see that 25, which leads to a 70% user success rate and

very low random attack success rate, is one good choice and hence is currently

used in the IMAGINATION demo. The two outcomes of this experiment were (a)

the verification of plausibility of this step, and (b) the selection of a desirable value

for parameter r.

6.4.2 Stage 2: Annotate

The experiments related to the annotate step consisted of distorting images and

measuring human and machine recognizability, over a set of 1050 Corel images

covering 35 easily identifiable categories. Machine recognizabilities was based on

the similarity measures PWD, EMD, and IRM (detailed in Sec. 6.1). Human

recognizability was measured based on a user study consisting of over 250 indi-

viduals, receiving over 4700 responses. The user study consisted of presenting

distorted images and a list of 15 words to each user (See Fig. 6.4), allowing them

to select an appropriate label, or choose ‘I cannot recognise’ (enabled only during
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experimentation). Recognition is considered failed if the latter is chosen, or if an

incorrect label is chosen. The following summarizes recognizabilities of humans

and machines, and their recognizability gap.

6.4.2.1 Atomic Distortions

We first analyzed results obtained from the application of atomic distortions on

images. In particular, the effect of luminance adjustment, noise addition, color

quantization, and dithering, each in isolation, were studied. For the latter two

distortions, cut/rescale was also applied for comparison. These results are pre-

sented in Figures 6.7, 6.8, 6.9, and 6.10 respectively. Dithering here is based on

orthogonal block partitioning. In each case, the range of values for which human

recognizability exceeds 0.9 are shown within Magenta colored dashed lines. They

help understand how human and machine recognizabilities contrast.

When pixel correspondence is unaffected, the pixel-wise distance (PWD) per-

formed quite well. However, with the cut/rescale addition, this correspondence

is broken and we see significant degradation of PWD’s performance (Fig. 6.9 and

6.10). In general IRM shows well-balanced performance, making it a good general-

purpose attack tool. Note also that in all these atomic distortion cases, the range

where human recognizability is high, at least one of the machine-based methods

show high recognizability as well. From this observation, we conclude that any

one atomic distortion, does not provide the requisite security from attacks while

still being able to maintain human recognizability. This leads us to searching the

space of composite distortions. Nonetheless, the results of atomic distortion give

a clear insights and help build intuitions about how to combine them effectively.

6.4.2.2 Composite Distortions

An exhaustive search for composite distortions is prohibitively expensive. One may

be able to think of algorithmic means to arrive at a composite distortion that sat-

isfies the image CAPTCHA requirements. For example, if atomic distortions are

considered analogous to features in a learning problem, then forward-backward se-

lection [18] seems to be an appropriate choice, adding and removing atomic distor-

tions (ordered), testing recognizability, and stopping on satisfactory performance.
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Figure 6.7. Variation of average machine recognizability with change in luminance
scaling factor. Human recognizability is high within the Magenta lines. The red and
blue regions above the graphs show ranges (and overlaps) of human and machine rec-
ognizability. Dark and light shades indicate ‘high’ and ‘low’ recognizability respectively.
Machine recognizability is considered ‘high’ for ρ ≥ 0.8.

Bottlenecks to systematic search for acceptable composite distortions are:

• Search space is large: Not only are there many possible atomic distortions,

they are also parameterized. Each add/remove step need also iterate over

the possible parameter values. For each distortion-parameter pair, machine

recognizability needs to be measure over multiple test images.

• Humans in the loop: The search space being so large, what is even more

problematic is measuring human recognizability at each step. This step

would require feedback from multiple users over a multitude of images.

• Lack of Analytical Solution: It is difficult to formulate it theoretically as

an optimization problem, without which analytical solutions are not possible.
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Figure 6.8. Variation of average machine recognizability with change in density of
noisy lines added, represented in pixels specifying the gap between consecutive lines.
Human recognizability is high within the Magenta lines. The red and blue regions above
the graphs show ranges (and overlaps) of human and machine recognizability. Dark and
light shades indicate ‘high’ and ‘low’ recognizability respectively. Machine recognizability
is considered ‘high’ for ρ ≥ 0.8.

Instead, we heuristically selected permutations of the atomic distortions and exper-

imented with them. Based on preliminary investigation, four composite distortions

seemed particularly attractive, and we conducted large-scale experimentation on

them.

Detailed description of each of the four chosen composite distortions are pre-

sented in Table 6.3, along with the corresponding experimental results. Each of

them are controlled by parameters DITHERPAR, which controls the extent of

dithering, and DENSEPAR, which controls the density of noise elements added.

To better visualize the recognizability gap as well as make the problem harder, the

three types of machine recognition are combined together in the following way. If
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Table 6.3. Four Distortions that are part of the IMAGINATION System
Distortion Steps Human

Recognizability

Machine Recognizability

(PWD+EMD+IRM)

1. Do k-center/k-means seg-
mentation (k=15).
2. Use cluster centroids to
quantize image.
3. Create image partitioning
using the Orthogonal Partition
Generator.
4. Dither each block with
DITHERPAR randomly drawn
colors.
5. Draw DENSEPAR lines
parallel to each axis, randomly
spaced.
6. Do 10-20% cut/rescale on
randomly chosen side. DITHERPAR (higher value −> clearer)
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mentation (k=15).
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Figure 6.9. Variation of average machine recognizability with change in quantization
level, specified in terms of the number of color clusters generated and (centroids) used
for mapping. Human recognizability is high within the Magenta lines. The red and blue
regions above the graphs show ranges (and overlaps) of human and machine recognizabil-
ity. Dark and light shades indicate ‘high’ and ‘low’ recognizability respectively. Machine
recognizability is considered ‘high’ for ρ ≥ 0.8, and we show the cut/rescale case here.

any one of PWD, EMD, or IRM recognizes an image, it is considered as successful

machine recognition. We find that for a limited range of parameter values in each

of them, human recognizability is high (exceeds 0.9) while machine recognizability

is low (below 0.1). These distortion type and parameter value/range combinations

are appropriate for inclusion into our experimental system IMAGINATION. The

few cases where machine recognizability exceeds human recognizability are also

interesting and worth exploring, but that is beyond the scope of this work.

To further the investigation and help design the IMAGINATION system better,

we studied the trends of human recognizability from the user responses. Figure 6.11

presented the variation of recognizability with parameter values across all four
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Figure 6.10. Variation of average machine recognizability with change in dithering
level, specified in terms of the number of colors available for dithering each partition.
Human recognizability is high within the Magenta lines. The red and blue regions above
the graphs show ranges (and overlaps) of human and machine recognizability. Dark and
light shades indicate ‘high’ and ‘low’ recognizability respectively. Machine recognizability
is considered ‘high’ for ρ ≥ 0.8, and we show the cut/rescale case here.

distortion types, revealing the general trend associated with DITHERPAR and

DENSEPAR regardless of the distortion type. More specifically, a greater number

of dithering colors tend to help humans recognize image content better, while

greater quantities of noise hinder their recognition. Figure 6.12 reveals yet another

aspect of the recognition process, namely the average human recognizability per

concept, taken over varying distortion type and strength. As can be seen, some

concepts (e.g., parade, vegetable) are inherently harder to identify than others.

The results we presented here are over-optimistic from the point of view of

attacks. This is because human recognizability only involves identifying the entity

and not ‘matching’ any specific pair of images. If we increase the number of



208

0 20 40 60 80 100
0.6

0.7

0.8

0.9

1

DITHERPAR/DENSEPAR

ρ H

Human Recognizability (Averaged over all 4 distortions)

 

 

DITHERPAR
DENSEPAR

Figure 6.11. Overall variation of human recognizability with dithering parameter
DITHERPAR and noise density parameter DENSEPAR, taken across all four composite
distortion methods.

0

0.2

0.4

0.6

0.8

1

bi
rd

bo
at

do
g

el
ep

ha
nt

flo
w

er

fru
it

ho
rs

e

pa
ra

de

py
ra

m
id

sc
ul

pt
ur

e

st
am

ps

tig
er

tra
in

ve
ge

ta
bl

e

w
at

er
fa

ll

ρ H

Figure 6.12. Overall variation of human recognizability with the image concept, taken
across all four composite distortions and their parameter values; 15 most frequently
sampled concepts are shown here.

images in the repositoryR, machine recognizability is bound to suffer, while human

recognizability should remains at about the same level as reported here. A real-

world system implementation will have many more than 1050 in its repository, and

will thus be more secure. Also note that with a 15 word choice list, the distortions

never need to reduce machine recognizability to less than 1/15, since randomly

selecting a word without even considering the image would yield a 1/15 chance.

6.5 Summary

In this chapter, we have presented a novel way to distinguish humans from machines

by an image recognition test, one that has far-reaching implications in Web secu-
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rity. The key point is that image recognition, especially under missing or pseudo

information, is still largely unsolved, and this semantic gap can be exploited for

the purpose of building better CAPTCHA systems than the vulnerable text-based

CAPTCHAs that are in use today. We have explored the space of systematic

distortions as a means of making automated image matching and recognition a

very hard AI problem. Without on-the-fly distortion, and with the original im-

ages publicly available, image recognition by matching is a trivial task. We have

learned that atomic distortions are largely ineffective in reducing machine-based

attacks, but when multiple atomic distortions combine, their effect significantly

reduce machine recognizability.

Our study, while in no way encompassing the entire space of distortions (or

algorithms that can recognize under distortion), presents one way to understand

the effects of distortion on the recognizability of images in general, and more

specifically to help design image CAPTCHA systems. Furthermore, it attempts

to expose the weaknesses of low-level feature extraction to very simple artificial

distortions. As a bi-product, an understanding of the difference in recognizability

of algorithms and humans under similar conditions also provides an opportunity

for better feature extraction design.



Chapter 7
Conclusions and Future Research

Directions

In this dissertation, I have explored novel ways to improve content-based image

search and automatic tagging with the help of statistical learning. My broad goal

was two-fold, (1) to contribute toward making the content-driven search paradigm

for images more accessible to the masses by removing some existing hurdles, and

(2) to enhance the search experience through innovative new approaches.

The former has been achieved with new models and algorithms for automatic

tagging which push the state-of-the-art in accuracy and efficiency. I have shown

that these automatically generated tags can be very effectively used in a number of

realistic image search modalities. Further, real-world usage requires adaptability

to changes. There has been demonstrated success in developing algorithms for

adapting to changing context, changing personalities (personalization) and changes

over time. Much of these topics, while arguably critical to the core of content-based

image search, have not been studied prior to this work.

For the latter, I have proposed to infer visual quality from image content,

aimed at enhancing the image search experience. For this, I have presented learn-

ing approaches for inferring aesthetic value of images using novel visual features

correlated with aesthetics, and empirically found them to be promising. The use

of aesthetics inference in selecting high-quality images from search result pools, or

eliminating low-quality ones, has been experimentally shown to be very effective.

Given the negligible prior art, these contributions are among the first on the topic.
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As a peripheral contribution, I have explored the use of image search techniques

in designing CAPTCHAs, which are hard AI problems aimed at distinguishing

humans from machines based on their response. On one hand, this dissertation

pushes the state-of-the-art in the hard AI problem of image semantics recognition

by proposing improved algorithms for image search and tagging. On the other

hand, it assumes that the frontiers will continue to be pushed and eventually make

this hard AI problem easy to solve, rendering image recognition based CAPTCHAs

unusable. Based on this assumption, I use state-of-the-art image search metrics to

design image CAPTCHAs so as to make them more attack resistant, should the

adversary use such techniques to launch attacks. The topic of systematic design

of image CAPTCHAs has not been previously explored.

7.1 Future Research Directions

While a number of novel contributions are made in this dissertation, they are in no

way complete solutions. The problems I deal with are relatively open-ended, with

a lot of scope for incremental improvement, or even for adopting radically new

approaches. Here, I summarize potential directions that can be explored further.

• With the proposed statistical models, automatic image tagging accuracy and

efficiency has improved to unprecedented levels. However, on an absolute

scale, these numbers are still low, especially on the accuracy front. While it

is hard to measure true recall, precision can be potentially pushed to a much

higher level with better algorithms. A higher precision would mean greater

reliability on the tags generated, and hence improved image search results.

• The proposed meta-learning algorithms for adapting image tagging to dif-

ferent kinds of changes shows promising results. However, it depends on

a moderately performing underlying annotation algorithm. I have experi-

mented with two such state-of-the-art annotation algorithm, but many oth-

ers have been proposed in the past. It remains to be seen if the meta-learning

approach is robust to a wide range of annotation algorithms or not. This can

only be made possible by experimenting with a large number of previously

proposed annotation systems, using a set of real-world datasets.
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• While the proposed approach to aesthetics inference is one of the first at-

tempts of its kind, empirical performance is found to be only moderately

good. There is a lot of scope to innovate in the visual feature extraction

front. With better, possibly more sophisticated features, a statistical model

has a greater chance of finding correlations, in the feature space, to aesthet-

ics. On the other hand, the statistical modeling part can improve as well,

taking into consideration the fact that aesthetics is highly subjective. Even-

tually, to robustly handle the issue of subjectivity, models should be built

on a per-person basis, on condition that sufficient data is available. Further-

more, subjectivity is such that it changes over time, so a personalized model

of aesthetics should ideally adapt over time as well.

• The use of image search techniques to design robust CAPTCHAs is a novel

attempt at harnessing multimedia search technology for network security.

Yet, such a design cannot be guaranteed to be foolproof because it makes

assumptions about the future, i.e., what tools an adversary might use to

attack image CAPTCHAs. This is clearly a limitation with all forms of

CAPTCHAs. The best possible strategy is therefore to ensure that all cur-

rently available attack tools be tested with. To achieve this, a large-scale

study involving various relevant image analysis and computer vision tech-

niques can be conducted. While this can be a tedious exercise, it is the only

way to claim strong security guarantees within the current context.

7.2 The Future of Image Search

The most popular image search tools currently available are the Web-based search

engines such as those of Yahoo! and Google, which rely heavily on surrounding

text to generate results. Content based image search is still not widely deployed for

public use, barring a few research efforts, e.g., Alipr [3]. One issue with deployment

is that image processing is computationally expensive, which makes rapid querying

and updating of the index of billions of images challenging. There is a trade-

off between sophistication and speed of the image recognition algorithms. With

rapidly growing computing power, this may becomes less of an issue in the future.
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Another issue with large-scale use of content-based search is the barrier with

using images as query modalities. It is arguably easier to type in search phrases

with a keyboard than to find an image from a stored location which describes

user intent well. There are a few ways in which researchers can potentially make

content-based image search more accessible. Some of these are already in place,

and others are in the offing. But none of these are under wide-scale deployment.

• Annotation driven search: This dissertation explored algorithms for an-

notation driven image search, as a way to make search more accessible. The

idea is to not change query modality at all, i.e., to stick to text queries. In-

stead, in the background, the images are automatically tagged using content-

based approaches. This will increase the coverage of tagged images, and

potentially remove noisy tags extracted from surrounding text.

• Cell phone driven search: With the widespread use of camera-equipped

cell phones, it is now easy to take a picture on the go. This allows the

user intent to be caught on camera more easily, as and when something

is observed. With new Web-enabled cell phones like the iPhone 3G, it is

possible to send the query image right away to a server, and get back results

instantaneously. With the general market-share of cell phone based search

increasing rapidly, this image search modality has great growth potential.

• Sub-image search: If we ignore for a moment the issue with specifying

image examples as queries, there is still the problem of conveying user intent

with a full image, which may contain various entities. In order to be more

specific with user queries, the search interface can allow the selection of

one or more sub-regions. If we consider each sub-region to be a word, and

allow the query to span multiple images, this is then equivalent to specifying

text queries with multiple keywords. The idea of sub-image search has been

around for a while, but with the availability of touch-screen cell phones and

other computing devices, acceptable public use seems more reasonable now.

Many years have passed since the days of QBIC [87], and we still do not have

large-scale deployment of content-based image search. The hope is that we are

reaching a stage in computer software and hardware advancement where this will

soon become reality.



Appendix A
Trends and Impact of Image

Retrieval Research

As part of an effort to understand the field of content-based image retrieval (CBIR)

and automatic annotation better, we have compiled research trends in image re-

trieval using Google Scholar’s search tool and its computed citation scores. First,

we present recent publication trends related to image retrieval research. Graphs

for publication counts and citation scores have been generated for (1) sub-fields of

image retrieval, and (2) venues/journals relevant to image retrieval research. Next,

we note that image retrieval has likely caused quite a few otherwise-unrelated fields

of research to be brought closer together than in the past. To help understand this

better, we present an analysis of the impact that various research communities

have had on each other in the process of finding solutions to the core problems in

image retrieval.

A.1 Publication Trends

We analyze recent publication trends in content-based image retrieval and annota-

tion via two exercises, with Google Scholar as aid. The first of these is an analysis

of which venues and journals have carried the most image retrieval related work

and what the impact is, and which sub-topics generated the most publication count

and impact in the last five years. The second one involves generating subtopic-wise

time-series capturing trends in publication over the last eleven years.
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Figure A.1. Conference-wise and journal-wise publication statistics on topics closely
related to image retrieval, year 2000 onwards. Top: Publication counts. Bottom: Total
citations.

We query on the phrase “image OR images OR picture OR pictures OR content-

based OR indexing OR ‘relevance feedback’ OR annotation ”, year 2000 onwards,

for publications in the journals - IEEE T. Pattern Analysis and Machine Intelli-

gence (PAMI), IEEE T. Image Processing (TIP), IEEE T. Circuits and Systems

for Video Technology (CSVT), IEEE T. Multimedia (TOM), J. Machine Learning

Research (JMLR), International J. Computer Vision (IJCV), Pattern Recognition

Letters (PRL), and ACM Computing Surveys (SURV) and conferences - IEEE

Computer Vision and Pattern Recognition (CVPR), International Conference on
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Figure A.2. Publication statistics on sub-topics of image retrieval, 2000 onwards.
Top: Publication Counts. Bottom: Total citations. Abbreviations: Feature - Feature
Extraction, R.F. - Relevance Feedback, Similar - Image similarity measures, Region -
Region based approaches, App. - Applications, Prob. - Probabilistic approaches, Speed
- Speed and other performance enhancements.

Computer Vision (ICCV), European Conference on Computer Vision (ECCV),

IEEE International Conference on Image Processing (ICIP), ACM Multimedia

(MM), ACM SIG Information Retrieval (IR), and ACM Human Factors in Com-

puting Systems (CHI). Relevant papers among the top 100 results in each of these

searches are used for the study. Google Scholar presents results roughly in decreas-

ing order of citations (again, only rough approximations to the actual numbers).
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Limiting search to the top few papers translates to reporting statistics on work

with noticeable impact. We gathered statistics on two parameters, (1) publishing

venue/journal, and (2) sub-topics of interest. These trends are reported in terms

of (a) number of papers, and (b) total number of citations. Plots of these scores

are presented in Fig. A.1 and Fig. A.2. Note that the tabulation is not mutually

exclusive (i.e. one paper can have contributions in multiple sub-topics such as

‘Learning’ and ‘Region’, and hence are counted under both headings), neither is it

exhaustive or scientifically precise (Google’s citation values may not be accurate).

Nevertheless, these plots convey general trends in the relative impact of scholarly

work. Readers are advised to use discretion when interpreting these results.

For the second experiment, we query Google Scholar for the phrase ‘image

retrieval’ for each year from 1995 to 2005, and note the publication count, say x.

We then add a phrase corresponding to a CBIR-related technique, e.g., relevance

feedback, and note the publication count again, say y. For each year and for each

phrase, we take the ratio y/x representing the fraction of relevant publications.

The time-series plot for eight such phrases, over the eleven years, can be seen in

Fig. A.3.

A.2 Scientific Impact on Other Communities

The list of references in our comprehensive survey [58] is probably a good way

to understand how diverse image retrieval as a field is. There are at least 30

different well-known journals or proceedings where CBIR-related publications can

be found, spanning at least eight different fields. In order to quantify this im-

pact, we conduct a study. All the CBIR-related papers in our survey are analyzed

in the following manner. Let a set of CBIR-related fields be denoted as F =

{Multimedia (MM), Information Retrieval (IR), Digital Libraries/ World Wide

Web (DL), Human-Computer Interaction (HCI), Language Processing (LN), Arti-

ficial Intelligence (including ML) (AI), Computer Vision (CV)}. Note the overlap

among these fields, even though we treat them as distinct and non-overlapping for

the sake of analysis. For each paper, we note what the core contribution is, in-

cluding any new technique being introduced. For each such contribution, the core

field it is associated with, a ∈ F, is noted. For example, a paper that proposed
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Figure A.3. Normalized trends in publications containing ‘image retrieval’ and corre-
sponding phrases, as indexed by Google Scholar. Counts are normalized by the number
of papers having ‘image retrieval’ for the particular year.

a spectral clustering based technique for computing image similarity is counted

under both CV and AI. Now, given the journal/venue where the paper was pub-

lished, we note the field b ∈ F which it caters to, e.g., ACM SIGIR is counted

under IR and ACM MIR Workshop is counted under both IR and MM. Over the

170 papers, we count the publication count and the Google Scholar citations for

each a → b pair, a 6= b. The 7 × 7 matrices so formed (|F| = 7) for count and

citations are represented as directed graphs, as shown in Fig. A.4. The thickness

represents the publication or citation count, normalized by the maximum in the

respective tables. Edges less than 5% of the maximum are not shown.

The basic idea behind constructing such graphs is to analyze how CBIR induces

interests of one field of researchers in another field. A few trends are quite clear

from the graphs. Most of the MM, CV and AI related work (i.e. CBIR research

whose content falls into these categories) has been published in IR venues and

received high citations. At the same time, AI related work published in CV venues

has generated considerable impact. We view this as a side-effect of CBIR research
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Figure A.4. [Acronyms: MM := Multimedia, IR := Information Retrieval, DL := Digi-
tal Libraries/ World Wide Web, HCI := Human-Computer Interaction, LN := Language
Processing, AI := Artificial Intelligence, and CV := Computer Vision]. Directed graphs
representing inter-field impact induced by CBIR-related publications. An edge a → b
implies publications at venue/journal concerning field b, having content concerning field
a. We show oppositely directed edges between pairs of nodes, wherever significant, in the
left and right graphs. Top: Edge thicknesses represent (relative) publication count.
Bottom: Edge thicknesses represent (relative) citations as reported by Google Scholar.

resulting in marriage of fields, communities, and ideas. But then again, there

is little evidence of any mutual influence or benefits between the CV and CHI

communities brought about by CBIR research.



Appendix B
Orthogonal Partition Generation

Here we show how the composite images are generated and how the approach leads

to uniformly distributed placement of image centers. The significance of uniform

distribution is that even if the adversary was aware of the algorithm for generating

the composite images, she would not be able to improve chance of successful attack

to better than random. In other words, if the algorithm generated constituent

image positions non-uniformly, the adversary may predict image centers more often

around regions of higher density, thereby increasing success chance even without

any image processing.

W ~ U(0, Y)

111 Φ112

(0,0) (X, 0)(X/2,0)

(X, Y)(0, Y)
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V ~ U(0, X/2)

(V’, W’)

Φ

Figure B.1. Steps to orthogonal partition generation, to create 8 rectangular sub-
regions for image tiling.

Let the composite image have dimensions X × Y , and be denoted by Φ. Let
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the uniform distribution over an [a, b] range be denoted by U(a, b). To achieve

uniformity in partitioning Φ to generate 8 sub-images, the following algorithm is

employed.

• Partition Φ along the center, either horizontally or vertically (randomly cho-

sen), at X/2 or Y/2 respectively, to get Φ1 and Φ2 respectively.

• Recursively partition Φ1 and Φ2 further. Here we explain the case of hori-

zontally split left-side rectangle Φ1, as shown in Fig. B.1. Other cases are

similar.

– Sample V ∼ U(0, Y ) and partition Φ1 vertically along V , to generate

two more sub-rectangles Φ11 and Φ12.

– Sample W ∼ U(0, X/2) and partition the upper sub-rectangle Φ11 hor-

izontally along W , to further generate sub-rectangles Φ111 and Φ112.

• In a similar way for the remaining cases, we end up with 8 partitions Φ111,

Φ112, Φ121, Φ122, Φ211, Φ212, Φ221, and Φ222.

Let us now analyze the probability distribution of the center of sub-rectangle Φ111,

with analysis of the other sub-rectangles being similar. The top-left corner of Φ111

is at (0, 0). The bottom edge row is at W which is drawn uniformly at random

over [0, Y ]. Similarly, the right edge column is at V , which is drawn uniformly at

random over [0, X/2]. Furthermore, V and W are drawn conditionally independent

of each other. Therefore, the joint p.d.f. f(v, w) of the random vector (V, W ) is

given by

f(v, w) = fV (v)fW (w) =
1

Y

2

X
=

2

XY

where fV (v) and fW (w) are the marginal densities. Furthermore, if a variable Z is

drawn uniformly from [0, c], having p.d.f. 1
c
, a new variable T = Z/2 is distributed

uniformly over [0, c/2] and has p.d.f. 2
c
. Therefore, given that the rectangle Φ111

spans (0, 0) to (V, W ), its center (V ′, W ′) is located at (V/2, W/2), is uniformly

distributed, and has a joint p.d.f. f(V ′, W ′) given by

f(v′, w′) = fV ′(v′)fW ′(w′) =
1

2
fV (v)

1

2
fW (w) =

8

XY

since V ′ and W ′ are conditionally independent of each other.
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In other words, for a composite image Φ of size X × Y , the center (V, W ) of

the sub-rectangle Φ111 (and similarly for other sub-rectangles), generated by the

algorithm above, can lie anywhere in the (0, 0) − (X/4, Y/2) region with equal

probability. Therefore, without analyzing the image content, given a single shot

at clicking near the center of Φ111 (or any other sub-rectangle), the adversary’s

success probability is approximately 8πr2

XY
, where r is the tolerance radius.
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